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ABSTRACT
Granular materials of practical interest in general have finite stiffness; therefore, the particle collision is a process that takes finite
time to complete. Soft-sphere Discrete Element Method (DEM) simulations suggest that there are three regimes for granular
shear flows: inertial regime (or rapid flow regime), elastic regime (or quasistatic regime), and the transition regime (or elastic-
inertial regime). If we use tf to represent the mean free flight time for a particle between two consecutive collisions and tc to
represent the binary collision duration, these regimes are implicitly related to the ratio tc/tf . Granular flows can be successfully
predicted by the classical Kinetic Theory (KT) when they are in the inertial regime of low particle-particle collision frequencies
and short time contacts (tc/tf ⇡ 0). However, we find that KT becomes less accurate in the transition regime where the collision
duration tc is no longer small compared with the collision interval tf (tc/tf > 0.05). To address this issue, we develop a soft-sphere
KT (SSKT) model that takes particle stiffness k as an input parameter since tc/tf is mainly determined by k. This is achieved by
proposing a modified expression for the collision frequency and introducing an elastic granular temperature Te. Compared with
the classical KT that only considers the kinetic granular temperature Tk, a redefined total granular temperature (Tg = Tk + Te/3)
that takes both kinetic fluctuation energy and elastic potential energy into consideration is used in the SSKT model. The model
is developed for identical frictionless particles with the linear-spring-dashpot collision scheme; however, it can be extended to
frictional systems as well after the modification of constitutive equations. We show that the proposed SSKT extends the appli-
cability of the KT framework to the transition regime without losing significant accuracy. The rheological crossover has been
explained physically, and the regime boundaries that separate the inertial regime and the elastic regime are quantitatively deter-
mined, showing good agreement with the previous regime map that was based on the DEM simulations. Our SSKT predictions
also show that for unsteady flows such as homogeneous cooling, the particle stiffness could have a large impact on the granular
flow behavior due to the energy transfer between Te and Tk.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5051034

I. INTRODUCTION

Continuummodeling of granular and gas-solid flows gen-
erally involves the use of Kinetic Theory (KT) models for the
particle phase.1,2 Many KTmodels have been derived for dilute
flows of rigid, frictionless spheres, which are the extensions of
the classical kinetic theory of gases. One important difference
between solid particles and gas molecules is that the kinetic
energy is conserved in the elastic molecule collisions but not
conserved in the inter-particle inelastic collisions. KT requires
inter-particle collisions to be instantaneous, admitting of only

binary collisions, so in theory, particles have to be rigid with
an infinity spring constant k.

Granular particles typically have sizes that are much
larger than one hundred microns. External fields such as grav-
ity would have amuch stronger effect on granular flows, which
makes it difficult to experimentally investigate the flow behav-
ior. Instead, simulations that use Lagrangian methods to track
the motion of individual particles are often used to verify the
KT model without the drawback of including gravity or other
external effects. In general, there are two Lagrangianmethods,

Phys. Fluids 31, 013301 (2019); doi: 10.1063/1.5051034 31, 013301-1

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

depending on if particle deformation is allowed during col-
lisions. The first one is the event-driven hard sphere (HS)
method, in which the simulation time step can vary accord-
ing to the collision interval and the changes in the parti-
cle velocity occur as instantaneous and discontinuous events.
Multi-body contact is not allowed in the HS method, and this
method may diverge at a high collision frequency, resulting
in the so-called inelastic collapse.3,4 The second approach is
the soft-sphere Discrete Element Method (DEM).5 In the DEM,
the collision is not an instantaneous event; it is resolved with
a simulation time step that is much smaller than the colli-
sion duration. Both normal and tangential interactions in the
DEM could be implemented by modeling the deformations
of the particles; other effects such as cohesive and repul-
sive forces could also be added. Most importantly, the DEM
allows multi-body collisions and it is more effective for granu-
lar flows in the regime where collisions take place frequently.
Similar to the DEM, there is another method called Contact
Dynamics (CD). It uses an implicit scheme that allows larger
simulation time steps and a nonsmooth formulation to solve
particle dynamics.6,7

When it comes to a granular system of practical interest,
particles always have finite stiffness. This means that the col-
lision is a process that takes finite time to complete and the
collision duration could be comparable to the collision inter-
val at a high collision frequency. Granular flows in this case
can be very complex. Based on the DEM simulations of homo-
geneous shear flow, it was observed that granular flows could
show either fluid-like behavior or solid-like behavior. In the
early modeling work, generally two regimes are distinguished:
inertial regime (or rapid-flow regime) and elastic regime (or
quasi-static regime).8 The difference of flow behavior between
elastic and inertial regimes can be attributed to the micro-
scale phenomena at the particle level. In the inertial regime,
the collision duration is negligible compared to the collision
interval and the hydrodynamic behaviors of granular flows
are mainly dominated by the rapid binary collisions. Many
researchers have reported that the instantaneous binary col-
lision assumption is still valid even for relatively dense flows
if the stiffness of contacts between particles is sufficiently
large;9–11 flows in this case can still be considered in the iner-
tial regime. Despite the existence of velocity correlation for
dense flows that could affect the KT predictions,10,12 classi-
cal KT exhibits generally good agreement with DEM simulation
results.13 However, in the elastic flow regime, many adjacent
particles are engaged in filament-like clusters that are called
force chains; the collision duration becomes comparable to
the collision interval and the sustained multi-particle contacts
start to prevail. With elastic flows being dominated by endur-
ing and multi-particle contacts, the collision duration can no
longer be ignored. In the elastic regime, the stress is observed
to be independent of the shear rate since the transport can
occur between particles through the elastic waves traveling
across the contact points at a rate which is governed by the
elastic properties and not by the granular temperature.14

The transition between these regimes is observed to be
smooth, which suggests that purely elastic or inertial flows

are achieved only within certain limits.15 Many researchers
constructed regime maps to better understand the regime
transition. The transition regime or the so-called elastic-
inertial regime is identified for a stress scale using both elas-
tic and inertial properties. Campbell14 presented his regime
map based on a series of DEM simulations of homogeneous
shear flow including cases that are near the elastic limit. He
adopted the dimensionless group k/⇢d3�̇2 to help understand
the rheology of the granular materials. Here, ⇢ is the particle
density, d is the particle diameter, k is the particle stiffness,
and �̇ is the shear rate. In general, the value of k/⇢d3�̇2 reflects
the ratio of the relative effects of the elastic contribution to
the collisional contribution; the collisional effect dominates
when k/⇢d3�̇2 is large. As the shear rate increases, both elastic
and inertial regimes approach the intermediate or transition
regime that shows a stress scaling �̇a with 0 < a < 2. As the
name suggests, the flows in the transition regime show mixed
characteristics of both elastic flows and inertial flows. This is
different from the elastic regime where ⌧ / �̇0 or the inertial
regime where ⌧ / �̇2. Classical KT fails to predict the hydro-
dynamic behavior of granular flows in the transition regime.
To model granular flows in the transition regime, researchers
came up with an approach that is based on the dimensional
analysis to identify dimensionless parameters of the prob-
lem. The solution of this approach is the algebraic relations
between those parameters, and this approach is called µ(I)
rheology.16

In the context of µ(I) rheology, there are two dimension-
less numbers to characterize the granular flow regimes. One
is the inertial number I = �̇d/

p
P/⇢, and the other is the con-

tact stiffness number  = k/Pd. I indicates the ratio of inertial
forces to the normal pressure P, and  compares the elastic
force to the normal pressure P. Consider that in the framework
of µ(I) rheology, the solid volume fraction � does not change,
and /I2 = k/⇢d3�̇2. These two dimensionless numbers I and
 are equivalent to � and k/⇢d3�̇2 from the work of Campbell.
Both sets of dimensionless numbers can describe the granular
flow regimes, and they are complementary; they are obtained
from two different types of simulations: one is the pressure
controlled shearing, and the other is the volume controlled
shearing. However, the contact stiffness is often assumed to
be very large in µ(I) rheology by only focusing on the cases
that have  > 104.16 At a large contact stiffness number , the
effect of particle stiffness is simplified and the inertial num-
ber I becomes the only parameter that characterizes the flow
regimes. A large value of I corresponds to the inertial regime,
while small I corresponds to the elastic regime. The µ(I) model
has been proved to be valuable in terms of modeling “liquid-
like” granular flows.17–19 However, without considering , the
simplified µ(I) model cannot cover a wide range of granular
flows as described in the work by Campbell.14 It is ill-posed
for both high and low inertial numbers as enduring elastic
force chains and binary collisions becomes important at these
limits and the dimensionless analysis fails to consider the addi-
tional physics during regime transition.20 The rheology that
can transition seamlessly between different regimes remains a
challenge.
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The aim of the present work is to extend the classi-
cal KT and develop a new KT model that can capture the
mixed behavior of granular flows in the transition regime.
Most of the existing KT models are limited to granular flows
near the inertial limit. There are primarily three factors that
could affect the accuracy of these KT models as granular flows
move away from the inertial limit: the reduced energy dis-
sipation rate due to the existence of velocity correlation for
dense granular shear flows, the reduced collision frequency
as a result of the finite particle contact duration, and the
non-dissipative elastic potential energy that is caused by par-
ticle collisional deformation. Among these three factors, the
first one is the consequence of particle contact inelasticity
and the last two stem from the breakdown of an instanta-
neous collision assumption due to the finite stiffness of par-
ticles. The velocity correlation factor has been well studied,
and it is believed to be the main factor that causes the dis-
crepancy between the KT predictions and the DEM simula-
tion results for dense homogeneous shear flows.21,22 Berzi
and Jenkins23 studied how the particle contact duration could
reduce the collision frequency of soft-sphere granular sys-
tems and affect the collisional terms. They adjusted the gran-
ular temperature of homogeneous shear flows to account for
velocity correlations. They have shown that for shear flows,
their model is able to produce results that agree well with
the DEM simulations. However, the effect of particle stiff-
ness to the transfer between the particle kinetic energy and
elastic potential energy has not been considered in the KT
models although this factor is well known in the DEM simu-
lations.24–26

In the context of classical KT, kinetic granular tempera-
ture Tk, expressed as the average kinetic fluctuating energy,
is defined to describe the collisional behavior due to particle
movement,

Tk =
1
3N

NX

i=1

(ci � u)2, (1)

where N is the number of particles in a system, c is the indi-
vidual particle’s velocity, and u is the local average velocity.
Since no particle deformation is considered in the classical KT
models, the granular temperature Tg defined in these models
is equivalent to the kinetic granular temperature Tk defined
in this work. The measured “granular temperature” from DEM
simulations in the literature is calculated from Eq. (1), which is
referred as Tk here. The lack of a second parameter to model
the elastic behavior of particle deformation makes many KT
models inappropriate for soft-sphere systems in the transition
regime.

In this study, we develop a soft-sphere KT (SSKT) model
that relaxes the instantaneous collision assumption. We show
that the SSKT can extend the applicability of the classical KT to
the transition regime without losing significant accuracy. This
is achieved by the incorporation of two modifications in the
SSKT model. The first one is to include the particle stiffness by
introducing an elastic granular temperature Te that signifies
the amount of elastic potential energy in the system. Similar

to the definition of kinetic granular temperature, we define
the elastic granular temperature as

Te =
1

mN

NcolX

i=1

kn⇠2
i , (2)

where Ncol is the average number of contacts in a system, m
is the mass of the particle, kn is the normal stiffness, and ⇠ i
is the particle overlap of the ith collision. An analytical solu-
tion to the elastic granular temperature is obtained that can
be calculated using the ratio of particle collision time to mean
flight time, tc/tf, which is explicitly related to the particle stiff-
ness. In the inertial regime where tc/tf ⇡ 0, we have Te ⇡ 0
and Tg ⇡ Tk, and the SSKT model is reduced to the classi-
cal KT model. As tc/tf increases, there would be a significant
amount of energy which exists in the form of non-dissipative
elastic potential energy, and we define the granular temper-
ature Tg = Tk + Te/3. The hydrodynamic behavior of granular
flow is determined by the particle velocity distribution, which
is a function of Tk instead of Tg. The SSKT model has better
prediction due to its ability to differentiate Tk from Tg at large
tc/tf. The second modification is similar to the one proposed
by Berzi and Jenkins.23 The constitutive relations are modi-
fied to reflect the reduced collision frequency as a result of
the finite collision duration. A new correlation is developed
for the particle collision frequency that includes the effect of
the solid volume fraction; this correlation can be extended
to dense granular flows. The collisional terms such as pres-
sure and shear stress are modified using this new correlation,
and the results are validated by the DEM simulations. We then
apply the SSKT model to study the free cooling process and
simple shear flows. We find that the SSKT model is not only
able to explain the discrepancy between the DEM simulation
results and the predictions of classical KT but also able to
produce results that agree well with the DEM simulations. Fur-
thermore, instead of constructing a regime map based on the
DEM simulation data, we create a new type of regime map
based on the ratio of the elastic potential energy to the kinetic
fluctuation energy.

II. THE SOFT-SPHERE KINETIC THEORY MODEL
Application of any KT model involves the kinetic equa-

tion for the particle velocity distribution function. The single-
particle velocity distribution function f(c, r, t) governs the
macroscopic properties of solid particles, which is a func-
tion of granular temperature. Here c, r, and t are the particle
velocity, position vector, and time variable, respectively. There
are two granular temperatures defined in this work. Kinetic
granular temperature Tk corresponds to the particle fluctu-
ations, while elastic granular temperature Te corresponds to
the particle deformation. The classical KT model is for rigid
body hard-sphere systems; it has no particle deformation, so
Tg = Tk for these systems. The granular temperature for hard-
sphere systems can refer to either Tg or Tk since they are
equal. However, for soft-sphere systems, Tk is not equal to Tg
and the single particle velocity distribution function f(c, r, t) is
determined by Tk instead of Tg.
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For dilute homogeneous shear flows under uniform shear
�̇ without an external effect, we can write the kinetic fluctua-
tion energy balance equation as

3
2
⇢�

dTg

dt
= ⌧�̇ � �, (3)

where ⌧ is the shear stress, and � is the energy dissipation
rate. A complete energy balance equation for general cases
and the related transport coefficients can be found in Ref. 27.
By defining the total granular temperature Tg = Tk + Te/3 on
the left-hand side of the equation, it can capture the energy
transfer between kinetic energy and elastic potential energy
observed in the DEM simulations. If we can express Te as a
function of Tk, the energy balance equation can be closed and
the change in Tk is a result of both inelastic collision and the
energy transfer from or to Te.

Based on the averaging method,28 Artoni and Richard29
derived the balance equations to consider the conversion
of mechanical energy due to affine deformations. Although
they did not directly include the elastic energy in the
energy balance equation, an additional energy dissipation
term was introduced for the long-lasting contacts. Kondic and
Behringer24 explored the role of elasticity in a system and
showed that the elastic energy could be larger than the kinetic
fluctuation energy in cases of a high solid volume fraction.
This portion of energy, Te, cannot be dissipated during col-
lisions, but it can be transferred to Tk spontaneously, which
will eventually affect the bulk behavior of granular flows. In
this section, we derive a model based on the linear-spring-
dashpot (LSD) scheme in order to calculate the amount of
elastic energy in a system. The LSD model is commonly used
to calculate the inelastic force between colliding spheres in
the DEM simulations. It leads to a constant coefficient of nor-
mal restitution. For the collision of two identical frictionless
particles, the particle normal interaction during a contact is
described as follows:

⇠̈ = � k
meff

⇠ � ⌘n

meff
⇠̇ , (4)

where meff = m/2, m is the mass of the particle, ⌘n is the nor-
mal damping coefficient, and ⇠ is the normal overlap of two
colliding particles. By solving Eq. (4) with the initial conditions
of ⇠ = 0 and ⇠̇ = V, we have

⇠ =
V

p
1 � �2!0

sin
 q

1 � �2!0t
!
exp(��!0t), (5)

⇠̇ = V cos
 q

1 � �2!0t
!
exp(��!0t) �

V�
p
1 � �2

⇥ sin
 q

1 � �2!0t
!
exp(��!0t). (6)

Here, � = ⌘n

2
p
knmeff

, !0 =
q

kn
meff

, and V is the pre-collision nor-

mal relative velocity at the point of contact. Given the value
of the normal restitution coefficient e, the normal damping
coefficient and binary collision duration can then be obtained,

⌘n =
2
q
meffkn | ln e |

p
⇡2 + ln2 e

, (7)

tc = ⇡*.
,
kn
meff

� ⌘2
n

4m2
eff

+/
-
� 1

2

. (8)

At any given time, the total elastic energy in the system is
measured by

Ee =
1
2

NcolX

i=1

kn⇠2
i , (9)

whereNcol is the total number of collisions at this specific time
and ⇠ i is the overlap of ith collision in the system. The time
averaged square of the normal overlap ⇠2

i during ith collision
follows

⇠2
i =

1
tc

⌅ tc

0
⇠2
i dt =

1
2

 
Vi

!0

!2
2666666664
1 �

p
1 � �2 sin

 
2⇡p
1��2

!

2⇡

3777777775
. (10)

Here, Vi is the pre-collision normal relative velocity com-
ponent at the point of contact of ith collision. Substituting

!0 =

q
2kn
m into Eq. (10), we have

kn⇠2
i =

1
4
mV2

i

2666666664
1 �

p
1 � �2 sin

 
2⇡p
1��2

!

2⇡

3777777775
. (11)

For a soft-sphere system with large portion of elastic potential
energy, there are a lot of collisions taking place in the system,
so the sum of ⇠2

i of each collision at any given time could be

approximated by the sum of the time averaged value ⇠2
i ,

NcolX

i=1

⇠2
i ⇡

NcolX

i=1

⇠2
i . (12)

Then we can rewrite Eq. (2) based on Eqs. (11) and (12) as

Te =

PNcol
i=1 (kn⇠

2
i )

mN
=

1
4
Ncol

N
V2
avg

2666666664
1 �

p
1 � �2 sin

 
2⇡p
1��2

!

2⇡

3777777775
, (13)

where V2
avg =

1
Ncol

PNcol
i=1 V2

i . According to the KT, for three
dimensional systems, the energy dissipation rate is30

� =
12⇢�2(1 � e2)g0T

3
2
k

d
p
⇡

, (14)

where e is the coefficient of restitution, and g0 is the radial
distribution function.31 We assume that only binary collisions
exist in the system. The collision frequency per particle is
equal to the inverse of mean free flight time between two
consecutive collisions,32

t�1f =
12
d
�g0

r
Tk

⇡
. (15)
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t�1f can be interpreted as the average number of collisions per
second for each individual particle. The derivation of Eq. (15)
can be found in the Appendix. Within one second, the total
number of collisions in the system is Nt�1f . � is defined as
the energy dissipation per second, so the average energy
dissipation per collision is as follows:

�

Nt�1f
= m(1 � e2)Tk. (16)

The average kinetic energy change during a collision could
also be derived based on the restitution coefficient as follows:

1
Ncol

NcolX

i=1

�Ei =
1
4
m(1 � e2)V2

avg. (17)

�Ei =
1
4m(1 � e2)V2

i is the transnational kinetic energy change
during a collision.1 Since both expressions on the right-hand
side of Eqs. (16) and (17) are the energy dissipation per colli-
sion and they must be equal, we can relate the average nor-
mal collision velocity Vavg to the kinetic granular temperature
Tk by

V2
avg = 4Tk. (18)

By combining Eqs. (13) and (18), the ratio of elastic temperature
to kinetic temperature can be written by

Te

Tk
=

Ncol

N

2666666664
1 �

p
1 � �2 sin

 
2⇡p
1��2

!

2⇡

3777777775
. (19)

To verify Eq. (19), we calculate the value of NTe/NcolTk from
the DEM simulations. The DEM simulations were performed
using the MFiX package,33 which is available from the National
Energy Technology Laboratory (NETL). The DEM simula-
tion time step �t must be sufficiently small compared with
the particle collision time tc in order to resolve the parti-
cle collision process. For the present simulations, we chose
�t = tc/50, a practice successfully employed by others.21,34,35
Particles were packed into a cubic domain with periodic
boundaries. Each particle was given an initial velocity that fol-
lows the Maxwell distribution function, so the system has an
initial granular temperature Tg = Tk. We choose e = 1 so that
without external effects, the total energy in the system remain
constant and the system quickly reaches a steady state. At a
steady state, Te becomes a non-zero term and Tg = Tk + Te.
Both Te and Tk can be calculated from DEM simulations based
on their definitions.

According to Eq. (19), the ratio NTe/NcolTk is only related
to the particle properties and it is close to 1 if the normal
restitution coefficient e!1. We calculated the ratio from DEM
simulations of granular flows with e = 1 at different granu-
lar temperatures and found good agreement with Eq. (19), as
shown in Fig. 1. Note that the derivation is not limited to e = 1
or a steady state although a rapid change in Te can slightly
affect the accuracy of Eq. (12). The relation between Tk and Te
is still valid at e < 1, which can be proved in the homogenous
cooling case in Sec. III B.

FIG. 1. NTe/NcolTk at different initial granular temperature Tg in m2/s2. Simula-
tions were set up in a cubic domain using 2984 particles with periodic bound-
ary conditions (� = 0.2). Dots represent the time averaged ratio from the DEM
simulations.

Since a collision is a process that takes a finite amount of
time tc to complete, particle is considered in a collision state
during this time window of tc. If the mean free flight time of
each particle is tf , the probability of any particle in the collision
state will be tc/tf , so we expect Ncol/N = tc/tf at any given
time. Therefore, we can rewrite Eq. (19) to

Te = tct�1f

2666666664
1 �

p
1 � �2 sin

 
2⇡p
1��2

!

2⇡

3777777775
Tk. (20)

To verify Eq. (20), DEM simulations were performed to
compute the value of Te/Tk of the system. Initial particle
velocities were given based on the initial granular tempera-
ture Tg; the values of Te/Tk were calculated as a function of
time. From Fig. 2(a), we can see that for a system with par-
ticles of finite stiffness, our proposed model could predict
the ratio of Te to Tk that matches the DEM results very well.
However, it starts to deteriorate as the portion of elastic
energy further increases. This is because the model relies
on the velocity profile that is based on the binary collision
assumption. It is expected that with the increasing portion of
non-binary collisions, the proposed model would become less
accurate and the time averaged elastic deformation becomes
more complicated. Based on the probability analysis, the
binary collision percentage in a system is4,32

Pbinary = exp(�2tct�1f ). (21)

Te/Tk is shown to increase with tc/tf , as shown in
Fig. 2(b). From Fig. 3, we find that a larger Te/Tk results in
a larger fraction of non-binary collisions, which reduces the
accuracy of our proposedmodels. This is evidenced in Fig. 2(b).
For a DEM simulation with tc/tf = 0.4, the proposed model
can still predict the ratio of Te to Tk quite well with less
than 10% difference compared to the DEM simulation results.
In other word, the non-binary collisions which weight about
65% of the total collisions in the DEM simulations cause only
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FIG. 2. Te/Tk compared with DEM results at different tc /tf . (a) The ratio of the
elastic temperature Te to the kinetic temperature Tk in granular systems with dif-
ferent tc /tf . Markers represents the DEM results (from top to bottom, tc /tf = 0.07,
0.16, 0.22, 0.30, 0.38), and lines are the predictions from Eq. (20). (b) The value
of Te/Tk along with the ratio of binary collision time to collision interval tc /tf . The
dashed line indicates the theoretical prediction; dots represent DEM results at �
ranging from 0.1 to 0.5.

10% difference compared with the ideal case of all binary
collisions.

When it comes to the SSKT model, the single-particle
velocity distribution function should be determined by Tk
instead of Tg; the existence of elastic energy should affect
the fluctuation energy dissipation rate since this portion of
energy could not be dissipated during collisions, but it could
be transformed into the form of kinetic energy at any time.
This introduces one more unknown Tk, and Eq. (20) has to be
used as a closed-form constitutive expression.

Moreover, we found that with the increase in tc/tf , the
actual collision frequency is less than the value predicted by
the classical KT,

fKT =
12
d
�g0

r
Tk

⇡
. (22)

Equation (22) represents the KT prediction of the collision
frequency for hard sphere systems; it yields good agreement
with the hard sphere simulation results.32 As shown in Fig. 4,
we find that the collision frequency for soft sphere systems

FIG. 3. The ratio of the number of binary collisions to the number of total collisions
in a system.

FIG. 4. Markers represent DEM results (circles: � = 0.3; triangles: � = 0.4; and
squares: � = 0.5). (a) The ratio of the measured collision frequency f from DEM
to the predicted collision frequency f KT by classical KT for granular systems at
different tc /tf . (b) Rescaled ratio (1 + (1 � �)tc/tf ) f

fKT
at different tc /tf .

decreases when tc/tf increases. Based on the DEM simula-
tion results, we found that the soft sphere collision frequency
could be nicely correlated by the following equation:
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f =
fKT

1 + (1 � �)tc/tf
. (23)

This expression resembles the one proposed by Berzi and
Jenkins,23 f = fKT

1+tc/tf
, when the system is extremely dilute (i.e.,

� ⇡ 0). Because the collisional stress and dissipation rate of
kinetic fluctuation energy are proportional to the collision fre-
quency, the constitutive relations that are derived for hard
spheres should be modified accordingly in order to be used for
soft spheres. Based on the expressions of the kinetic theory
for hard spheres,36,37 the constitutive equations of the SSKT
model are listed in Table I. The expressions for classical KT
and the extended KT by Berzi and Jenkins23 are also listed for
comparison.

In Table I, the energy dissipation rate � of classical KT can
be found in many KT models,1,37 and the pressure p and shear
stress ⌧ of classical KT are obtained from Eqs. (25) and (26) in
the work by Berzi and Jenkins.23 Note that if we use pKT to rep-
resent the prediction of classical KT, the modified pressure is
written as p�1 = p�1KT+(pKT

tc
tf )
�1 in their extended KTmodel. This

is equivalent to the modification that all collision frequency
related terms are multiplied by a factor f/fKT or 1/(1 + tc/
tf ), which is the form we used in Table I. As an intermediate
variable, the collision frequency fKT is not explicitly derived in
many KT models, and its definition may vary case by case. In
our work, fKT is defined as the number of collisions per parti-
cle in 1 s. The detailed derivation can be found in the Appendix.
Also the expression of Te from SSKT in Table I has a differ-
ent form compared with Eq. (20), in which K and H are used
to replace tc/tf (tc/tf = KT1/2

k ), so Tk can be moved to the
right-hand side of the equation. Due to the reduced collision

frequency, terms that are derived based on particle collisions
are multiplied by f/fKT according to Eq. (23).

To validate the proposed SSKT model, we compared the
predicted collision frequency with the DEM simulation results.
We performed several DEM simulations with different tc/tf
at � = 0.3. Our results were compared with the predictions
from the model by Berzi and Jenkins23 based on measured Tk
from DEM. As shown in Fig. 5(a), the collision frequency pre-
dicted by the SSKT model could match the reduced collision
frequency better as tc/tf increases. In general, the flow pres-
sure could be divided into two parts, p = pcol + pkin. Here, pcol
is related to the collision frequency and pkin is related to the
particle kinetic fluctuation. The SSKT predicts that pkin is not
affected by the elastic energy and pcol varies along with the
reduced collision frequency, as shown in Fig. 5(b).

In the case of steady shear flows, the driving forces are
converted to granular temperature through shear work, and
“heat” is dissipated through inelastic collisions. For dense
steady-state shear flows, the velocity correlation as a result
of the force chain has to be considered,38,39

�
d
L
= ⌧�̇, (24)

L = max
"
2(1 � e)

15
(g0 � g0,f ) + 1, 1

#
. (25)

Here L is the correlation length which is a function of
the solid volume fraction and restitution coefficient. g0,f is the
value of radial distribution function at �f = 0.49.40

Equation (24) can be further simplified and lead to Tk
/ �̇2. We can show that for steady homogeneous shear flows,

TABLE I. Summary of model equations.

Classical KT23,37 Berzi and Jenkins23 SSKT

Tg = Tk Tg = Tk Tg = Tk + 1
3Te

Te = 0 Te = 0 Te = KHT3/2
k

� = 12
d
p
⇡
⇢�2g0(1 � e2)T3/2

k � = 12
d
p
⇡
⇢�2g0(1 � e2)T3/2

k
f
fKT

� = 12
d
p
⇡
⇢�

2g
0 (1 � e2)T3/2

k
f
fKT

p = ⇢�Tk + 2⇢(1 + e)�2g0Tk p = ⇢�Tk + 2⇢(1 + e)�2g0Tk
f
fKT

p = ⇢�Tk + 2⇢(1 + e)�2g0Tk
f
fKT

⌧ = 8
5⇢d�

2g0J
q

Tk
⇡ �̇ ⌧ = 8

5⇢d�
2g0J

q
Tk
⇡ �̇

f
fKT

⌧ = 8
5⇢d�

2g0J
q

Tk
⇡ �̇

f
fKT

fKT = t�1f =
12
d �g0

q
Tk
⇡ fKT = t�1f =

24
d �g0

q
Tk
⇡ fKT = t�1f =

12
d �g0

q
Tk
⇡

J = 1+e
2 + ⇡(1+e)2(3e�1)

96�24(1�e)2�20(1�e2) J = 1+e
2 + ⇡(1+e)2(3e�1)

96�24(1�e)2�20(1�e2) J = 1+e
2 + ⇡(1+e)2(3e�1)

96�24(1�e)2�20(1�e2)

tc = d
5 (

⇢⇡d
4k )

1
2 tc = ⇡( kn

meff
� ⌘2

n

4m2
eff
)�

1
2

f
fKT
= [1 + tc

tf
]�1 f

fKT
= [1 + (1 � �) tctf ]

�1

⌘n =
2
p
meff kn | ln e|p
⇡2+ln2 e

� = ⌘n

2
p
knmeff

K = 12
d �g0

p
⇡( k

meff
� ⌘2

n

4m2
eff
)�

1
2

H = 1 � 1
2⇡

p
1 � �2 sin( 2⇡p

1��2
)
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FIG. 5. Comparison between the prediction of KT models and DEM simulation
results. (a) Collision frequency f (circles represent DEM results). The predicted
collision frequency and pressure by Berzi and Jenkins23 are also plotted for
comparison. (b) pkin and pcol (circles represent pcol , and squares represent pkin
from DEM results). The predicted collision frequency and pressure by Berzi and
Jenkins23 are also plotted for comparison.

Te remains constant, which does not enter the energy bal-
ance equation. The effect of the reduced collision frequency
f/fKT on both sides of Eq. (24) is canceled out as well. The
particle stiffness would have no impact on the bulk behavior
if the flows are at a steady state and the energy diffusion is
negligible. However, particle stiffness can affect the constitu-
tive relation between stresses and kinetic granular temper-
ature. If we let phard, ⌧hard, and Thard be the collisional pres-
sure, shear stress, and kinetic temperature predicted by the
classical KT model and let psoft, ⌧soft, and Tsoft be the pres-
sure, shear stress, and kinetic temperature predicted by the
SSKT model, we have found Tsoft/Thard = 1, psoft/phard = f/fKT,
⌧soft/⌧hard = f/fKT, and psoft/⌧soft = phard/⌧hard. Therefore, the
change in particle stiffness of homogeneous shear flows will
not change Tk and ⌧/p. This is evidenced in the DEM simu-
lations by Vescovi and Luding,41 as shown in Table II. Com-
paring two simple shear DEM simulations at � = 0.6 with
k/⇢d3�2 being equal to 103 and 107, respectively, the differ-
ence between the ⌧/p values is less than 2% and the differ-
ence between the Tk values is less than 11%. However, the
difference between the p values is as large as 75% and the

TABLE II. Measurement of steady state quantities at � = 0.6 from Vescovi and
Luding.41

k/(⇢d3�̇2) p/(⇢d2�̇2) ⌧/(⇢d2�̇2) Tk/(d2�̇2) ⌧/p

103 11.14 3.26 0.58 0.2926
107 40.48 11.85 0.66 0.2927

difference between the ⌧ values is 72%. This shows that the
particle stiffness has a significant impact on the pressure and
shear stress fields of granular shear flows.

III. THE EFFECT OF PARTICLE STIFFNESS
ON GRANULAR FLOWS
A. Steady shear flows and regime maps

For steady homogeneous shear flows, Te remains con-
stant, which does not enter the energy balance equation.
Although Te of steady shear flows has no impact on the gran-
ular flow behavior, it can be used to indicate the granular
flow regime and help quantitatively determine the boundaries
on the regime map. Using data obtained from DEM simula-
tions, many researchers constructed a regime map for granu-
lar flows to better understand the regime transition. Camp-
bell unified the various granular flow theories and filled in
the gap between the elastic granular flows and rapid gran-
ular flows.14 In his theory, the ratio of the elastic effect to
the inertial effect is governed by a dimensionless parameter:
k/(⇢d3�2). Since k/(⇢d3�2) / 1/(�tc)2, this ratio can be fur-
ther interpreted as the square of the ratio of 1/�, a time scale
that is relevant to how quickly particles are drawn together
by the shear flow and how quickly the elastic contact forces
push them apart.42 A complete flow map for shearing granular
materials was presented based on the DEM simulation results,
as shown in the left column of Fig. 6. His theory leads to the
ironic conclusion that rapid granular flows (i.e., granular flows
in the inertial regime) occur only at small shear rates when the
solid volume fraction is fixed. He explained that the increas-
ing shear rate could compel the formation of force chains at
lower concentrations. This phenomenon, on the other hand,
could be explained by the SSKT model based on the role of
elastic energy: the increasing shear rate could result in high
temperature and high collision frequency, making the binary
collision time comparable to the collision interval and inval-
idating the instantaneous collision assumption. The inertial-
non-collisional regime on his map is equivalent to the tran-
sition regime as we discussed in this study; it indicates the
limit where the KT starts to deteriorate as the elastic effect
begins to dominate. The KT model becomes invalid as the flow
moves further into the elastic regime. However, the transition
regime on his regime map was estimated based on the DEM
simulation results, and his theory did not provide an analyti-
cal method to accurately determine the extent of the elastic
effect in the transition regime.

Sun, Jin, and Zhou26 analyzed their DEM simulation
results and found that the ratio of elastic energy to the kinetic
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FIG. 6. Regime maps as presented by Campbell (Camp-
bell 2002) based on DEM simulations (left column) and the
presented model based on the ratio Te/Tk (right column).
Te/Tk = 0.1: triangles; Te/Tk = 0.2: squares; Te/Tk = 0.5:
circles. (a) µ = 0.1, left: fit with DEM data from Campbell;
right: drawing based on SSKT. (b) µ = 0.5, left: fit with
DEM data from Campbell; right: drawing based on SSKT. (c)
µ = 1.0, left: fit with DEM data from Campbell; right: drawing
based on SSKT.

energy could be used to determine the granular flow regime.
Here we use the ratio Te/Tk from Eq. (20) as the parameter to
determine the significance of the elastic effect in the inertial
regime. For frictional granular systems, we use the modifica-
tion proposed by Chialvo and Sundaresan,21 which includes
the modified radial distribution function g0,µ and energy bal-
ance equation between the granular temperature and shear
rate,

g0,µ =
1 � 1

2�

(1 � �)3 +
0.58�2

[�c(µ) � �]3/2
, (26)

where �c(µ) is the µ dependent critical solid volume fraction.21

Based on the DEM simulation results, Campbell14 calcu-
lated the ratio of averaged contact time from DEM to the the-
oretical binary collision duration determined by the particle
properties, tDEM/tc, to determine if the particle interactions
are collisional. If all the collisions are binary, the actual con-
tact time tDEM must be equal to the binary collision duration,
tc. However, if the particles are involved in force chains in
which particles endure longer contact time, one would expect
the ratio tDEM/tc > 1. In theory, the KT model is only valid
for collisional flows that correspond to tDEM/tc = 1; any value

larger than unity indicates non-binary collisional behavior,
and the bulk behavior would be affected by not only the gran-
ular temperature but also the elastic properties of particles. In
his work, three lines were added to the regime map, roughly
pointing to the places where tDEM/tc falls below 1.5, 1.25, and
1.1, respectively. As the ratio becomes larger, the flow shows
more elastic characteristics. A significant departure from the
rapid flow behavior is observed when tDEM/tc = 2 at a solid
fraction of 0.57.43 Unlike their work in which the regime maps
were drawn based on the DEM simulation results, here we
quantitatively determine the extent of the elastic effect at the
transition from inertial flows to elastic flows on the map based
on the ratio Te/Tk. Since Te/Tk is proportional to the frac-
tion of multi-body collisions as discussed in Sec. II, we expect
the elastic granular temperature to be an alternative param-
eter that measures the elastic effect. As shown in the right
column of Fig. 6, a very similar profile was observed as we
change Te/Tk from 0.1 to 0.5. This indicates that both Te/Tk
and tDEM/tc can be used to measure the extent of elastic effect
in the system.

We also quantitatively compared our SSKT predictions
with the DEM simulation results reported by Vescovi and
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FIG. 7. Comparison between theoretical predictions and results from DEM simple
shear simulations. Dots represent DEM data from Vescovi and Luding.41 Solid
lines represent the SSKT prediction. Short dashed lines and long dashed lines
represent the model by Berzi and Jenkins23 and the classical KT, respectively.
(a) Scaled pressure vs. solid volume fraction �. (b) Scaled shear stress vs. solid
volume fraction �.

Luding.41 In their work, simulations under uniform shear were
conducted for frictionless spheres with k/⇢d3�2 ranging from
103 to 107. We choose the cases with k/⇢d3�2 = 103 � 105

so that a large amount of elastic potential energy exists. The
measured kinetic granular temperature is then used as an
input to calculate the pressure and the shear stress. As shown
in Fig. 7, for flows at a small solid volume fraction, tc/tf is
negligible because the collision interval tf is large and the
results from both the KT model and the SSKT model could
match the DEM results well. However, as � becomes large,
tf will decrease and eventually become comparable to tc; in
this case, the classical KT model over-predicts both pres-
sure and shear stress and the discrepancy between the KT
predictions and the DEM results becomes significant. It is
also noticed that smaller k results in larger tc/tf and fur-
ther increases the discrepancy. On the other hand, our SSKT
model could predict the pressure and shear stress very well
compared with the DEM simulation results. We conclude that
the inclusion of particle stiffness into the KT model is very
important for modeling granular flows away from the inertial
limit; the SSKT model is able to capture the reduced pressure

and shear stress after considering the particle stiffness. The
results from Berzi and Jenkins23 model are also plotted
in Fig. 7. For steady flows, the elastic granular tempera-
ture remains unchanged; both models modify solid stresses
through the reduced collision frequency. Even though a new
expression of the soft-particle collision frequency is used
in the SSKT model, there is not much difference observed
in the predicted pressures and stresses between the SSKT
model and the Berzi and Jenkins model. However, it should
be pointed out that a fitting contact duration tc = d

5 (
⇢⇡d
4k )

1
2

is used in the Berzi and Jenkins model in order to match the
DEM simulation results. This is not needed in our SSKT model
since an accurate tc = ⇡( kn

meff
� ⌘2

n

4m2
eff
)�

1
2 for the LSD col-

lision scheme has been used, which is consistent with tc
in DEM simulations. Compared with the Berzi and Jenkins
model, the SSKT model can also predict the transfer between
kinetic and elastic energy, which is very important for tran-
sient flows that have varying Te. The comparison between
two models for unsteady cooling cases will be discussed in
Sec. III B.

B. Homogeneous cooling cases
For transient flows such as homogeneous cooling cases,

Te changes along with time, which means part of the elastic
potential energy is being converted to the kinetic fluctua-
tion energy during the cooling process. The change in Tk is
a result of both inelastic collisions and energy transfer from
Te. The collision frequency is related to both the solid volume
fraction and the kinetic granular temperature; it increases
as the solid volume fraction or kinetic granular temperature
increases, which means that the KT model can fail not only in
the dense regime but also in the dilute regime at high gran-
ular temperature. The applicability of the KT model on uni-
form shear flows has been widely studied, but few studies
have focused on the homogeneous cooling cases. As there is
no driving force in a free cooling system, the initial granular
temperature in the system will decrease due to inelastic colli-
sions. Here we set up a three-dimensional free cooling system
of fine particles. The system is dilute with a solid volume frac-
tion � = 0.2 and particle restitution coefficient e = 0.99. We
choose e = 0.99 so that the high granular temperature will
dissipate slowly and the effect of the high collision frequency
on soft-sphere systems can be more significant. The external
force fields are ignored, and only the particle energy dissipa-
tion is considered. The DEM results are compared with the
theoretical predictions of the SSKT model to investigate its
accuracy in terms of predicting the energy dissipation rate.
The change in total granular temperature Tg is equal to the
energy dissipation rate of the system �. From Eq. (3), we
have

d
dt

"
3
2
⇢�

 
Tk +

1
3
Te

!#
= ��, (27)

and from the SSKT model, we have

Te = KHT3/2
k . (28)
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Combining Eqs. (27) and (28), the equation to solve Tk becomes

3
2
dTk

dt
=

12
d
p
⇡
�g0(1� e2)

T3/2
k⇣

1 + 1
2KHT1/2

k

⌘ f
1 + (1��)KT1/2

k

g , (29)

where g0(�) =
1� 1

2 �

(1��)3 is the radial distribution function for cases
with � < 0.49.44

We first run the DEM simulation with low initial granular
temperature Tk0 = 2 ⇥ 10�4 m2/s2 and vary particle stiffness k
from 102 N/m to 104 N/m. This also changes the binary col-
lision duration tc. As shown in Fig. 8(a), the KT predictions
match the DEM results well when the initial granular tempera-
ture is relatively low such that the initial tc/tf is less than 0.05.
During the cooling process, tc/tf is further decreased due to
the decay of Tk, making tc negligible. Contrary to the conven-
tional wisdom, we find that the classical KT model can fail at
low solid volume fractions if the particle collision frequency
is sufficiently high (initial tc/tf > 0.1), as shown in Fig. 8(b), in
which the initial granular temperature Tk0 = 2 ⇥ 10�2 m2/s2.

FIG. 8. Kinetic granular temperature Tk /Tk 0 as a function of rescaled time:

8/d(1 � e2)�g0
q

T0
⇡ t when the system is dilute and particles are nearly elas-

tic (� = 0.2, e = 0.99). The solid line shows the prediction of the classical KT, and
markers represent the DEM results. (a) tc /tf < 0.05 at low initial granular temper-
ature Tk 0 = 2 ⇥ 10�4 m2/s2, different k has almost no impact on the results. (b)
tc /tf > 0.1 at high initial granular temperature Tk 0 = 2 ⇥ 10�2 m2/s2, different
k has a significant impact on the results if Tk 0 is large.

The KT prediction deteriorates because the increase in the
collision frequency causes the collision interval to decrease,
making the collision duration a parameter that can no longer
be neglected when compared to the collision interval. There-
fore, a large tc/tf at the initial stage increases the discrepancy
between the predictions of the classical KT model and the
DEM simulation results. As tc/tf increases due to the decrease
in particle stiffness k, particles become softer and a significant
amount of kinetic energy is converted into non-dissipative
elastic energy, resulting in a larger portion of elastic poten-
tial energy or a larger Te/Tk and a lower energy dissipation
rate. At the same time, the collision frequency decreases, as
shown in Eq. (23), and the energy dissipation rate is further
reduced. From Fig. 9(a), we could see the classical KT can only
match the result when tc/tf is very small. On the other hand,
the SSKTmodel is able to include the effect of particle stiffness
and provide better predictions even at large tc/tf . In Fig. 9(b),
we also plot the results of the Berzi and Jenkins23 model for
the case of tc/tf = 0.46. Realizing that the velocity correlation

FIG. 9. Comparison between theoretical predictions and DEM results for homo-
geneous cooling cases. (a) Kinetic granular temperature Tk /Tk 0 as a function of

rescaled time: 8/d(1 � e2)�g0
q

T0
⇡ t when the system is dilute and particles

are nearly elastic. The solid line is the prediction of the classical KT, and dashed
lines are results of the proposed SSKT model with different particle stiffness as
the input. Markers represent the DEM simulation data. (b) Tk and Te predicted
by SSKT compared with DEM results (circles: Tk ; squares: Te) and other models.
tc /tf = 0.459.
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should have no impact on flows without shear, we conclude
that the energy dissipation rate of the homogeneous cool-
ing flow is affected by the combination of the reduced colli-
sion frequency and existence of non-dissipative elastic energy.
Since the Berzi and Jenkins model does not consider the effect
of elastic potential energy, its prediction does not agree with
the DEM simulations results. We extended Berzi and Jenkins
model by considering Tg = Tk + Te/3 and using the collision
frequency expression in their model. During the cooling pro-
cess, a large amount of elastic potential energy is converted
to kinetic fluctuation energy. By including Te into the granular
temperature Tg, it can significantly decrease the discrepancy
between the DEM and the theoretical prediction. However,
there is still a difference between the predictions of the the-
ory and the DEM because the reduced collision frequency is
not accurately accounted for. On the other hand, by consid-
ering Tg = Tk + Te/3 and using the proposed expression of the
collision frequency from Eq. (23), the SSKT model is able to
correctly predict the change in kinetic granular temperature
as well as the elastic granular temperature during the cooling
process.

IV. CONCLUSION
Finite particle stiffness makes sustained contacts possi-

ble. As a result, granular materials even in the dilute regime
can exhibit both collisional and non-collisional behaviors. Flow
regimes have commonly been used to better understand the
hydrodynamic behaviors of different kinds of granular flows.
For flows in the inertial regime, collisions can be treated as
instantaneous events and the particle stiffness k would have
less impact on the results, so the classical KT model can
accurately capture the flow behavior and compare well with
the DEM simulations. However, as flows move away from the
inertial regime to the transition regime, the particle stiffness
becomes critical in predicting the characteristics of granular
flows. In some cases, the collision interval predicted by the KT
model can be comparable to or even smaller than the collision
time, which can be interpreted as the existence of enduring
contacts between particles. Therefore, the modeling of gran-
ular flows in the transition regime has to consider the elastic
properties of particles. In the present work, we have devel-
oped a SSKT model that takes the particle stiffness as an input
parameter. The SSKT model extends the classical KT model by
considering part of the kinetic fluctuation energy that actu-
ally exists in the form of elastic potential energy. This form
of energy cannot be dissipated by collisions but can be trans-
ferred to the kinetic fluctuation energy spontaneously, which
eventually affects the bulk behavior of granular flows. An elas-
tic granular temperature is proposed to quantify the elastic
potential energy in the system, and a correlation between the
kinetic granular temperature and elastic granular temperature
is derived based on the LSD collision scheme. In addition, an
expression for the reduced collision frequency is proposed
based on the DEM simulation results, which could be used
to modify the pressure and stress in the SSKT model and to
explain the change in granular flow behavior in the transi-
tion regime. We have shown that the SSKT model is able to

produce results that are in very good agreement with the DEM
simulations. Considering the fact that granular flows of practi-
cal interest such as fluidized beds are unsteady and away from
the inertial regime limit, the inclusion of particle stiffness into
the continuum model allows us to improve the KT framework
for a wider range of granular flows.
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APPENDIX: PARTICLE COLLISION FREQUENCY
FROM KINETIC THEORY

For three-dimensional systems, the unperturbed particle
distribution function could be written as

f(c, r, t) = n
 

1
2⇡Tk

!3/2
exp

 
� c2

2Tk

!
, (A1)

where n is the particle number density and r and c are the
position and velocity of each individual particle, respectively.

The collisional integration for the collision frequency is
similar to the derivation of energy dissipation term, which can
be found in the Appendix of another paper.30 The total number
of collisions per second in the system takes the form

dNcol

dt
=

d2

2

⌅
dc1

⌅
dc2

⌅

c12 ·k<0
(c12 · k)g0n2

 
1

2⇡Tk

!3

⇥ exp
 
�
c21 + c

2
2

2Tk

!
dk. (A2)

To obtain the integrations in Eq. (A2), we need to
transform the integral variables dc1dc2 to dc12dc012, where

c1 =
c012+c12

2 and c2 =
c012�c12

2 . The Jacobian of this transformation
is 1/8. We obtain

dNcol

dt
= 2⇡1/2d2n2g0T

1/2
k . (A3)

The collision frequency is defined as the number of col-
lisions per particle, so we need to divide the number of colli-
sions by the particle number density n, and n = 6�

⇡d3 . Finally,
we have

fKT =
1
n
dNcol

dt
=
12
d
�g0

r
Tk

⇡
. (A4)
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