arXiv:2412.13243v1 [cs.CL] 17 Dec 2024

In-Context Learning Distillation for Efficient Few-Shot
Fine-Tuning

Yifei DUAN, Liu LI, Zirui ZHAI, Jinxia YAO
Georgia Institute of Technology
yduan92,111665,zzhai38, jyao320@gatech.edu

Abstract

We applied few-shot in-context learning on the OPT-1.3B
model for the natural language inference task and employed
knowledge distillation to internalize the context informa-
tion, reducing model parameter from 1.3B to 125M and
achieving a size reduction from 2.5GB to 0.25GB. Com-
pared to using in-context learning alone on similarly sized
models, this context distillation approach achieved a nearly
50% improvement in out-of-domain accuracy, demonstrat-
ing superior knowledge transfer capabilities over prompt-
based methods. Furthermore, this approach reduced mem-
ory consumption by up to 60% while delivering a 20% im-
provement in out-of-domain accuracy compared to conven-
tional pattern-based fine-tuning.

1. Introduction/Background/Motivation

Large Language Models (LLMs) have revolutionized
natural language processing, demonstrating remarkable ca-
pabilities in various tasks. However, their deployment faces
significant challenges, particularly with regard to mem-
ory requirements during training and inference. In-context
learning (ICL)[3]], while effective, requires substantial com-
putational resources due to the need to maintain long con-
text windows. This limitation becomes particularly se-
vere when dealing with tasks that require extensive con-
text processing, such as long-form dialogue or document
analysis. The core challenge lies in the trade-off between
model performance and resource efficiency. Current ap-
proaches require extensive computational resources (full
fine-tuning)[2]] or significant memory overhead (ICL). This
creates a barrier to training, inference and deployment in
resource-constrained environments and limits the practical
applicability of LLMs in real-world scenarios.

Few-shot learning is used for task adaptation by en-
abling the model to generalize to specific tasks with min-
imal labeled data. This approach leverages a small number

of training examples, which makes it particularly valuable
for scenarios where obtaining large-scale annotated datasets
is impractical. Conventional solutions to few-shot learn-
ing generally fall into two categories: weights-updating
fine-tuning and prompt-based context learning. Each ap-
proach has significant limitations, particularly when scal-
ing to larger models or deploying in resource-constrained
environments. Fine-tuning requires updating some or all
model parameters, leading to high computational costs and
potential catastrophic forgetting. In-Context Learning de-
mands large memory allocations for context windows, lim-
iting scalability.

In this paper, we implemented Context Distillation
(CD)[41], a novel approach that combines the benefits of
fine-tuning and in-context learning while minimizing their
respective drawbacks. Our key contributions include: (1)
A novel context distillation methodology that efficiently
captures prompt information in model parameters. (2)
Integration with parameter-efficient fine-tuning techniques
(BitFit[6] and LoRA[1]). (3) Comprehensive experiment
designs to study the impact of critical hyper-parameters
and model sizes horizontally and vertically. This approach
provides a resource-efficient solution that balances perfor-
mance with hardware constraints, enabling the deployment
of advanced LLM capabilities, particularly for on-device
applications.

The Multi-Genre Natural Language Inference (MNLI)
corpus [5] is used for all training and evaluation in this pa-
per. It contains sentence pairs labeled as entailment, contra-
diction, or neutral, designed to train and assess models on
natural language inference tasks. The dataset includes sep-
arate training, development, and testing sets, divided into
matched (in-domain) and mismatched (cross-domain) sub-
sets to evaluate generalization. Each data point consists of
a “premise” sentence, a “hypothesis” sentence, and a label
indicating their relationship.

2. Approach
2.1. implementation

The hardware setup for this experiment includes
NVIDIA T4, A100, and RTX 3090 GPUs. The T4 GPU,
with at least 16 GB of RAM, is sufficient for performing in-
ference on models up to 1.3 billion parameters in half pre-
cision, supporting up to 12 support examples per evaluation
and a training size of 20 in this study. The implementation is
developed using PyTorch and Python 3.9, primarily on the
RTX 3090 GPU. Most evaluations and analyses are con-
ducted on cloud-based A100 GPUs to ensure consistency
in training time and memory usage, eliminating hardware
variability as a factor in the results.

The MNLI dataset is first refined into a binary classi-
fication task by removing instances labeled as neutral. For
efficient processing, the dataset is reduced to a pool of 3,000
examples, from which support cases are randomly selected
while ensuring the query case is excluded from the support
set. Experiments show that varying the pool size to 1,000
or 10,000 examples has negligible impact on the results,
demonstrating the robustness of the approach to pool size
variations. This is expected as the few-shot training data is
limited to 20 examples, regardless of the size of the pool
they are drawn from. The methods ICL, PBFT, and CD
require prompts structured with three components: prefix,
support, and query. The support component includes 1 to
12 examples. A sample prompt structure is provided in Ta-
ble[Tl

Few-shot fine-tuning leverages contextual embeddings
during the model training process, employing the AdamW
optimizer with a learning rate of le-5 and a 40-epoch
schedule. Evaluations are performed using in-domain and
out-of-domain accuracy, along with peak memory usage.
GPU memory utilization is tracked with utility tools such
as ‘torch_peak_allocated_memory’, and computational effi-
ciency is measured using ‘timer’ over 100 cases per evalua-
tion. While ‘timer’ may not fully account for asynchronous
GPU operations, its error margin of less than 1 second is
deemed acceptable for this study. Results are benchmarked
against the pre-trained model without fine-tuning, provid-
ing insights into the effectiveness and efficiency of context
distillation in enhancing model performance.

To adapt the large language model (LLM) for binary
classification, a verbalizer was utilized to map the model’s
output logits to interpretable labels, specifically using ’yes”
for entailment and “no” for contradiction. This simpli-
fied label space enhanced decision-making while lever-
aging the pre-trained model’s ability to assign meaning-
ful probabilities to natural language tokens. During eval-
uation, the verbalizer mapping was consistently applied
across both in-domain (MNLI-matched) and out-of-domain
(MNLI-mismatched) validation splits, enabling a compre-

hensive assessment of model performance.

Label Content

Prefix Determine if the premise entails the hy-
pothesis. Answer with yes or no.

Support Premise: It was a steep learning curve
for me, she said.
Hypothesis: She faced no difficulty
with the task.
Answer: No

Query Premise: I'll listen and agree with what
I think sounds right.
Hypothesis: I won’t even bother listen-
ing.
Answer:

Prediction Yes (based on the logit outputs of ver-
balizers)

Table 1. Sample prompt with one support and one query for
pattern-based fine-tuning and context distillation. The table re-
produces the structure of the prompt used in the experiment.

To ensure efficient and consistent fine-tuning, we inde-
pendently implemented two parameter-efficient techniques:
LoRA and BitFit. LoRA used a low-rank matrix rank
(r) of 8, a scaling factor (Lora_alpha) of 32, and tar-
geted the g_proj and v_proj layers with a dropout rate
(lora_dropout) of 0.05. This setup was optimized for
sequence classification tasks (task_type="SEQ_CLS")
and allowed approximately 23% of the model’s parameters
to remain trainable. BitFit, on the other hand, fine-tuned
only the bias parameters, freezing all other weights. In
the investigated cases, less than 0.1% of the parameters are
trainable for BitFit.

2.2. Few-shot fine-tuning overfitting

Few-shot fine-tuning is particularly prone to overfitting,
as observed in our experiments, where increasing the num-
ber of epochs leads to a decline in out-of-domain accu-
racy. To counter this, hyperparameters such as learning
rate and batch size were carefully optimized to ensure con-
trolled parameter updates, reducing the model’s susceptibil-
ity to noise in the limited data. Learning rates were tested
systematically within the range of le-4 to le-7, while the
number of epochs was varied between 2 and 100. The
optimal configuration of these hyperparameters was se-
lected based on maximizing out-of-domain accuracy, strik-
ing a balance between effective learning and prevention
of overfitting. Moreover, parameter-efficient fine-tuning
(PEFT) techniques, such as LoRA and BitFit, were em-
ployed to leverage pre-trained knowledge by freezing or
significantly reducing the number of trainable parameters.
These techniques demonstrated improved accuracy com-
pared to traditional fine-tuning approaches without PEFT

methods. By preserving general representations learned
from larger datasets while allowing task-specific adaptation,
this approach effectively mitigates overfitting.

2.3. Uncertainties in accuracy evaluation

To ensure that the measured accuracy reliably reflects
the model’s performance, evaluations were performed us-
ing inferences ranging from 100 to 1,000. For each infer-
ence count, five runs were conducted with different random
seeds, and the final accuracy results were averaged over
these runs. The results reveal that the number of inferences
has a minimal impact on accuracy, with deviations of ap-
proximately +15%. For efficient evaluation purposes, ac-
curacy is determined from 100 inferences, recognizing that
each inference may include multiple support cases, partic-
ularly for methods such as in-context learning. Addition-
ally, since the accuracy results remain consistent across runs
with different random seeds, a fixed random seed is uti-
lized in subsequent analyses to ensure reproducibility and
consistency across runs and platforms. This setup effec-
tively balances computational efficiency with robust and re-
liable evaluation, ensuring fair comparisons of model per-
formance.

2.4. Loss imbalance in context distillation

For training processes that involve combining multiple
loss functions, it is essential to ensure that the losses are bal-
anced to prevent one from dominating the total loss. In our
approach, the loss is primarily based on the KL-divergence
between the student and teacher logits. To test this, we em-
ployed a dynamic balance between the KL-divergence loss
(L) and the cross-entropy loss (L..) between the stu-
dent’s predictions and the true labels. This is represented
by the equation:

L= OzLKLJr(l *Oz)Lce (D)

where « is a balancing factor. When a = 0, the context
distillation reduces to vanilla fine-tuning, focusing solely
on the cross-entropy loss. Conversely, when @ = 1, the
approach becomes equivalent to knowledge distillation, re-
lying entirely on the KL-divergence loss. By varying a, we
aim to find an optimal balance that maximizes the perfor-
mance of the student model, effectively leveraging both the
teacher’s knowledge and the true labels to achieve robust
learning. Our experiments reveal that out-of-domain accu-
racy initially increases with o but subsequently decreases
beyond a certain point. Based on these observations, we de-
termined that o = 0.5 provides the best trade-off, yielding
optimal performance by harmonizing the contributions of
the teacher’s predictions and the true labels.

2.5. Selection of Verbalizers

The selection of verbalizers plays a critical role in deter-
mining the performance of a model, particularly in binary
classification tasks. To create a concise verbalizer pool,
we designed prompts that explicitly instructed the model
to respond with “Yes” or “No,” as demonstrated in Table
This strategy ensured that the model’s top two token predic-
tions were “Yes” and ‘“No,” which collectively accounted
for over 40% of the total probability. During experimen-
tation, we noticed that verbalizers starting with lowercase,
such as “yes,” could occasionally be tokenized differently.
To address this, we combined “Yes” and “yes” as valid ver-
balizers, although results indicated that including “yes” did
not alter performance. This observation underscores the ro-
bustness of this verbalizer choice, providing reliable out-
comes while minimizing ambiguity in binary classification
tasks.

2.6. LLM with half precision

During our experiment with pattern-based fine tuning,
we observed that fine-tuning required a significant amount
of memory. Specifically, context distillation proved infeasi-
ble on a 24 GB GPU when using a teacher model of 1.3 bil-
lion parameters and a student model of 125 million param-
eters. To address this, we imported the model in FP16 pre-
cision, which substantially reduced the memory footprint
and enabled us to deploy the 1.3B teacher model. However,
we encountered a critical issue: FP16 precision resulted in
loss values being returned as ‘NaN,’ likely due to its insuf-
ficient dynamic range for our setup. To resolve this, we
switched to BF16 precision, which maintains the same dy-
namic range as FP32 but sacrifices some accuracy. This
adjustment proved effective, as BF16 accommodated our
memory constraints while avoiding the loss stability issues
encountered with FP16. This approach allowed for success-
ful execution of context distillation while significantly re-
ducing memory usage.

3. Experiments and Results

3.1. Experiments setup

We conducted a comprehensive set of controlled ex-
periments to systematically evaluate and compare multi-
ple approaches, including the baseline method (pre-trained
model without task adaption), In-Context Learning (ICL),
Parameter-Based Fine-Tuning (PBFT), and Context Distil-
lation (CD) techniques, along with their parameter-efficient
variants (e.g., PBFT+LoRA, PBFT+BitFit, CD+LoRA,
CD-+BitFit). In these experiments, we varied the number of
support examples (e.g., 1, 4, 8, 12) and recorded in-domain
and out-of-domain accuracy, peak memory usage, and total

training and evaluation times. By applying this consistent
setup across all methods, we were able to directly assess
their performance stability, resource consumption, and scal-
ability, thereby identifying key trade-offs and guiding prin-
ciples for selecting the most suitable method under differ-
ent practical constraints. For further details on the parame-
ter settings and experimental configurations, please refer to
Section 2.1.

3.2. Baseline, ICL, PBFT, Context Distillation

Our experimental results (Figure [I) demonstrate dis-
tinct patterns in both in-domain and out-of-domain accu-
racy across the four methods evaluated. In-domain perfor-
mance shows that ICL (In-Context Learning) consistently
outperforms other approaches, achieving peak accuracy of
approximately 0.9 with 4 support examples. This repre-
sents a significant improvement over the baseline, which
maintains relatively stable performance around 0.6 across
different numbers of support examples. The Context Dis-
tillation (CD) method shows comparable performance to
the baseline, while PBFT exhibits declining performance
with increased support examples, particularly after 8 exam-
ples where accuracy drops to approximately 0.4. For out-
of-domain generalization, the performance dynamics shift
notably. CD demonstrates the most robust performance,
maintaining accuracy around 0.6-0.65 across different sup-
port example quantities. Both ICL and PBFT show more
volatile performance patterns, with accuracies fluctuating
between 0.4-0.5, suggesting less stable generalization ca-
pabilities compared to their in-domain performance.

Memory consumption patterns reveal significant differ-
ences among the methods (Figure 2] left panel). PBFT
shows a linear increase in peak memory usage, scaling
from approximately 3GB with 1 support example to over
10GB with 12 support examples. This trend indicates po-
tential scalability concerns for larger datasets. CD demon-
strates moderate memory requirements, stabilizing between
1.5-2GB across different support example quantities, of-
fering a balanced compromise between memory efficiency
and performance. Most importantly, the memory usage for
CD is nearly independent of the number of support exam-
ples. Lastly, since ICL and the baseline do not involve fine-
tuning, their memory metric is based on the inference pro-
cess, showing consistent memory usage of approximately
1GB regardless of the support example count. This level of
memory usage is also expected for the inference process of
PBFT and CD.

Figure 2] on the right panel shows that training time effi-
ciency varies substantially across methods. PBFT exhibits
the highest computational overhead, with training time in-
creasing linearly from approximately 100 seconds to 160
seconds as support examples increase. This scaling be-

1.00 2 1.00
> ©
2 s
2 0.75 i /\\' 8 0‘75 N
Y <
g < .——/0‘0\.
< 0.50 £ 0.50 3:3%:70
g —@— baseline g —@— baseline

—@— ICL ° & ICL

"8 025 7 —@— PBFT “é 025] —@— PBFT
£ -e- D s - D

0.00 © 0.00

0 2 4 6 8 1012
Number of Support Examples

0 2 4 6 8 1012
Number of Support Examples

Figure 1. In-domain and out-of-domain accuracy for different task
adaptation techniques applied to OPT-125M model vs. numbers
of support examples.

— 10 q —@ baseline 150 4
o -@- ICL I
e —o PBFT >
> - CD £ i —@— baseline
5 = 100 -®- ICL
5 5 4 o -~ PBFT
E £ 50 8- CD
© e
& ‘\o/.\o e
e 04o—0-—t-eo0

0 2 4 6 81012
Number of Support Examples

0 2 4 6 81012
Number of Support Examples

Figure 2. Peak GPU memory allocated and training time for dif-
ferent task adaptation techniques applied to OPT-125M model vs.
numbers of support examples. Note that the baseline and ICL do
not involve fine-tuning; their memory usage reflects only the in-
ference process, and the training time is plotted as O for reference

havior suggests potential limitations for large-scale applica-
tions. Conversely, CD demonstrates remarkable efficiency,
maintaining nearly constant training times regardless of the
number of support examples. CD consistently requires
around 20 seconds per training session. Note that the base-
line and ICL do not involve fine-tuning; their training time
is plotted as O for reference. These results suggest that while
ICL achieves superior in-domain performance without re-
quiring fine-tuning, CD offers better generalization capabil-
ities with moderate resource requirements. PBFT, despite
its flexibility, faces scalability challenges in both memory
usage and training time as the number of support examples
increases.

3.3. PBFT+BitFit and PBFT+LoRA Analysis

Our experimental results demonstrate notable differ-
ences between PBFT and its parameter-efficient variants
(Figure E]) For in-domain accuracy, both PBFT+BitFit and
PBFT+LoRA maintain stronger performance compared to
baseline PBFT, particularly with larger numbers of sup-
port examples. While standard PBFT’s accuracy decreases
notably at 12 support examples (dropping to around 0.4),
both variants maintain more stable performance, remain-

ing between approximately 0.55 and 0.62. PBFT+BitFit
achieves slightly higher accuracy, peaking at about 0.62
when using 12 support examples, while PBFT+LoRA sus-
tains a consistent range near 0.58-0.62. In out-of-domain
generalization, all three approaches show similar perfor-
mance patterns, with accuracies ranging between 0.48-0.60.
PBFT+BitFit and PBFT+LoRA both demonstrate more sta-
ble performance across varying numbers of support exam-
ples compared to baseline PBFT, with PBFT+BitFit show-
ing marginally better stability in the 0.5-0.6 range.

1.00 > 1.00

> e~ PBFT] —e— PBFT
—@— PBFT+LORA | 5 ~@— PBFT+LORA

% 0.75 4 —e— PBFT-+Bitfit § 0.75 A —8— PBFT+Bitfit
< < M
< 0.50 5 0.50
£ S
$0.25- % 0.25
< &

0.00 +——r—— 3 0.00 +——+——

0 2 4 6 8 1012
Number of Support Examples

0 2 4 6 8 1012
Number of Support Examples

Figure 3. In-domain and out-of-domain accuracy for PBFT OPT-
125M model using LoRA and BitFit.

_ | -o- parr | e~ peFT
z 10.0 —@— PBFT+LORA @ 150 1 o PBFT+L0RA/
e —8— PBFT+Bitfit > -8 PBFT+Bitfit
2 7.5 £
g =
15} o 100 4
2 5.0 =
© °
9 =

2.5 1 50 4

—T—T T

0 2 4 6 8 1012

Number of Support Examples

0 2 4 6 8 1012

Number of Support Examples

Figure 4. Peak GPU memory allocated and training time for PBFT
OPT-125M model using LoRA and BitFit.

Memory consumption patterns reveal distinct advan-
tages for both parameter-efficient variants (Figure [} left
panel). Baseline PBFT shows the highest memory require-
ments, scaling linearly to approximately 10.5GB with 12
support examples. By contrast, both PBFT+BitFit and
PBFT+LoRA achieve significant memory savings, with
PBFT+BitFit demonstrating the most efficient memory
utilization (reaching about 8.5GB at 12 examples) and
PBFT+LoRA occupying an intermediate position at nearly
(approximately 9.7GB at 12 examples). While all ap-
proaches maintain linear scaling with increased support
examples, both parameter-efficient variants show notably
lower slopes, indicating better memory efficiency without
compromising model effectiveness.

Training time analysis reveals significant variations
among the three approaches (Figure] right panel). Base-

line PBFT consistently incurs the greatest overhead, requir-
ing approximately 160 seconds with 12 support examples.
By contrast, PBFT+LoRA demonstrates the most substan-
tial improvement in training efficiency, reducing the re-
quired time to nearly 116 seconds under the same condi-
tions. PBFT+BitFit offers an intermediate improvement,
needing roughly 148 seconds. All methods exhibit linear
scaling in training time with increased support examples,
but PBFT+LoRA maintains a consistently lower slope, sug-
gesting superior scalability for larger datasets.

These results highlight the complementary strengths of
the parameter-efficient approaches. PBFT+BitFit excels in
maintaining stable task performance while reducing mem-
ory usage, while PBFT+LoRA achieves the fastest train-
ing time efficiency. Thus, the choice between these vari-
ants should be guided by specific application requirements:
PBFT+BitFit is preferable when task performance and
memory constraints are paramount, while PBFT+LoRA is
advantageous when training speed is the primary concern.
Both variants successfully address the scalability limita-
tions of the baseline PBFT, providing valuable trade-offs to
suit diverse operational requirements.

3.4. CD+BitFit and CD+LoRA Analysis

Our experimental results reveal interesting patterns in the
performance of Context Distillation (CD) and its parameter-
efficient variants (Figure [5). For in-domain accuracy, all
three approaches demonstrate remarkably stable perfor-
mance across different numbers of support examples, main-
taining accuracies between 0.57-0.66. CD+BitFit slightly
outperforms the others at higher support counts, reaching a
peak accuracy of 0.66 at 12 supports, while baseline CD and
CD+LoRA maintain consistent performance around 0.60-
0.63. Notably, unlike the earlier PBFT experiments, none
of the variants exhibit the performance degradation as sup-
port examples grow, highlighting improved robustness and
scalability. In out-of-domain generalization, the methods
show more distinct patterns. Baseline CD maintains the
most stable performance at around 0.6-0.63 accuracy across
all support examples. CD+LoRA shows variable perfor-
mance, starting lower at about 0.58 with just 1 support, but
steadily improves, ultimately reaching 0.64 at 12 supports,
thus demonstrating enhanced adaptability as more examples
become available. By constrast, CD+BitFit demonstrates
the most conservative performance, maintaining steady but
lower accuracy around 0.5 throughout all support example
quantities. Although this consistency avoids drastic drops,
it lags behind CD and CD+LoRA’s higher out-of-domain
scores.

Memory consumption patterns reveal significant differ-
ences among the three approaches (Figure [6] left panel).
CD+BitFit shows the highest but most stable memory us-

1.00 > 1.00
5 -@— CD © -- CD
—o— Cl ol - Cl ol

g 0.75 A - cg:;ix g 0.75 4 - cg:;ix
< 0.50 - § 0.50 - F,';:Z:
©
E o
$ 0.25 4 g 0.25
E el

0.00 3 0.00

0 2 4 6 8 1012

Number of Support Examples

0 2 4 6 8 1012
Number of Support Examples

Figure 5. In-domain and out-of-domain accuracy for OPT-125M
student model distilled from OPT-1.3B teacher model with and
without LoRA or BitFit.

5
— -~ CD .__./0’/4
3 - CD+LoRA 3
= -~ CD+Bitfit w 50
el €
‘E’ 41 F
[g‘ 40 4
= £
~ H —-&— CD
3 i —@— CD+LoRA
o) = 4
e 31 30 —e~ CD+Bitfit

0 2 4 6 8 1012
Number of Support Examples

0 2 4 6 8 1012
Number of Support Examples

Figure 6. Peak GPU memory allocated and training time for ap-
plying context-distillation to OPT-125M-student-and-OPT-1.3B-
teacher model with and without LoRA or BitFit.

age, maintaining around 5.5GB across different numbers
of support examples. The baseline CD demonstrates more
variable memory consumption, starting at approximately
4.7GB, dropping to 3.8GB at 4 support examples, and
then increasing again to about 4.9GB with 12 examples.
CD+LoRA achieves the most efficient memory utilization,
starting at around 2.8GB and stabilizing at approximately
3.6GB with higher numbers of support examples, showing
minimal increase beyond 8 support examples. Such modest
increments highlight CD+LoRA’s ability to accommodate
larger support sets without incurring steep memory penal-
ties.

Training time efficiency varies notably across the three
methods (Figure [6] right panel). CD+BitFit shows the
highest but most consistent training time, requiring around
65 seconds regardless of the number of support examples.
CD+LoRA demonstrates intermediate efficiency, maintain-
ing relatively stable training times around 55 seconds. The
baseline CD shows the most variable pattern, starting with
the lowest training time (approximately 27 seconds) but
scaling up more significantly with increased support exam-
ples, reaching about 50 seconds with 12 examples.

These results suggest that each variant offers distinct ad-
vantages: CD+LoRA provides the best balance of mem-
ory efficiency and training time stability, while maintaining
competitive task performance. CD+BitFit offers the most

stable (though higher) resource utilization and slightly bet-
ter in-domain performance with fewer examples. The base-
line CD shows superior out-of-domain generalization but
at the cost of less predictable resource utilization. These
trade-offs suggest that the choice between variants should
be guided by specific application requirements and resource
constraints.

4. Discussion
4.1. Summary

Context distillation is employed to fine-tune the OPT-
125M model using an OPT-1.3B teacher model, demon-
strating significantly improved knowledge transfer with
nearly 50% higher out-of-domain accuracy compared to in-
context learning. Additionally, context distillation has sub-
stantially lower hardware requirements than conventional
pattern-based fine-tuning, reducing peak memory usage by
up to 60%. On top of that, the memory requirements for
context distillation remain nearly independent of context
size, unlike pattern-based fine-tuning, where memory usage
increases nonlinearly with context size. By enabling few-
shot fine-tuning without consuming input token limits for
context, context distillation ensures that the context window
is dedicated to the query prompt, accelerating the inference
process. This approach also eliminates constraints on con-
text size, making it suitable for handling long conversations,
entire documents, or extensive code bases.

4.2. Limitations and Future Work

This study has several limitations that provide opportu-
nities for future research. Hardware constraints restricted
fine-tuning experiments to small-scale open-source mod-
els (OPT-125M, 350M, and 1.3B), with larger models like
OPT-6.7B facing out-of-memory errors on A100 GPUs.
Time constraints limited hyperparameter exploration, hin-
dering deeper insights into model optimization. The study
focused on a single task, leaving the generalizability of
Context Distillation across diverse tasks unexplored. Min-
imal effort was invested in prompt engineering, which is
critical for model performance, warranting future studies to
design and evaluate more effective prompts. Additionally,
challenges with mixed-precision training impacted memory
efficiency; resolving these issues could enable experiments
with larger models and batch sizes. Addressing these lim-
itations will be crucial for advancing Context Distillation
research.

References

[1] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large lan-
guage models. arXiv preprint arXiv:2106.09685, 2021.

(2]

(3]

(4]

(5]

(6]

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao,
Qipeng Guo, and Xipeng Qiu. Full parameter fine-
tuning for large language models with limited re-
sources. arXiv preprint arXiv:2306.09782, 2023.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. Few-shot fine-tuning
vs. in-context learning: A fair comparison and evalua-
tion. arXiv preprint arXiv:2305.16938, 2023.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning
by distilling context. arXiv preprint arXiv:2209.15189,
2022.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. A broad-coverage challenge corpus for sen-

tence understanding through inference. arXiv preprint
arXiv:1704.05426, 2017.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. Bitfit: Simple parameter-efficient fine-tuning

for transformer-based masked language-models. arXiv
preprint arXiv:2106.10199, 2021.

	. Introduction/Background/Motivation
	. Approach
	. implementation
	. Few-shot fine-tuning overfitting
	. Uncertainties in accuracy evaluation
	. Loss imbalance in context distillation
	. Selection of Verbalizers
	. LLM with half precision

	. Experiments and Results
	. Experiments setup
	. Baseline, ICL, PBFT, Context Distillation
	. PBFT+BitFit and PBFT+LoRA Analysis
	. CD+BitFit and CD+LoRA Analysis

	. Discussion
	. Summary
	. Limitations and Future Work

