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Individual constituent balance equations are often used to derive expressions for
species-specific segregation velocities in flows of dense granular mixtures. We propose
a semiempirical expression for the interspecies momentum exchange in density-bidisperse
granular flows as an extension of ideas from kinetic theory and compare it to a previous
viscous drag approach that is analogous to particles settling in a fluid. The proposed model
expands the range of the granular kinetic theory from short-duration binary collisions to
the multiple enduring contacts characteristic of dense shear flows and incorporates the
effects of particle friction, concentration ratio, and local flow conditions. The segregation
velocities derived from the momentum balance equation using both interspecies drag
models match the downward and upward segregation velocities of heavy and light particles
obtained from DEM simulations through the flowing layer depth for different density
ratios and constituent concentrations in confined shear flows. Predictions of the kinetic
theory inspired approach are additionally compared to results from free surface heap flow
simulations, and, again, a close match is observed.
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I. INTRODUCTION

Dense granular materials, when sheared, tend to segregate by particle size, density, shape or
friction coefficient, which can be problematic in many industries due to its impact on product quality
and uniformity [1–8]. As a result, the segregation behavior of sheared granular mixtures is of interest
in a wide variety of fields from both fundamental and applied standpoints.

We focus on bidisperse granular mixtures of particles having the same size but different densities
such that segregation is driven by a “buoyant force” mechanism [9,10]. ln this paper, we propose a
model based on the kinetic theory of granular flow (KTGF) for the interspecies drag between heavy
and light particles in density-bidisperse granular flows and use the model to derive an expression for
the segregation velocity of each species by considering the balance between the net buoyant force
and the interspecies drag force. We then compare this new drag model to a previous viscous drag
model [11,12] that is analogous to the viscous drag force acting on a particle settling in a fluid.

To model the segregation process for both approaches, we assume that two different particle
species can be treated as interpenetrable continua such that each constituent has its own partial
pressure, consistent with previous studies [1,3,4]. The imbalance between a species’ partial pressure
and its body force results in segregation of the two species. A linear relation between the drag force
on a particle and its segregation velocity has been used in several previous gravity-driven segregation
models for size or density segregation [1,4,11–15] based on either the similarity of kinetic sieving in
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granular segregation with fluid percolation through a porous material or an analogy to the drag force
on a sphere settling in a fluid. The linear drag model has been combined with the constituent mass
and momentum balances to derive a general multicomponent theory for segregation [16]. However,
Weinhart et al. [17] demonstrated that the coefficient fitted from the linear drag model varies with
time, indicating that a simple linear drag law fails to describe the segregation behavior. Recent
DEM simulations also suggest that other factors, such as the local pressure [18,19] and the species
concentration ratio [20,21], affect the segregation velocity, which again raises questions concerning
the validity of a linear drag model.

As an alternative to the linear drag model, it is natural to consider the KTGF to model
the momentum transfer between two segregating species. The KTGF provides a drag model
connecting stresses and velocities in a granular mixture while accounting for complex particle
interactions [22–28], thereby yielding a drag model that takes particle density and diameter into
consideration at the particle level. However, there are two issues with using the KTGF approach to
model dense flows. First, the stress generation mechanism in the KTGF is based on short-duration,
binary collisions typical of dilute particle flows as opposed to multiple, enduring contacts typical
of the dense granular flows considered here. Second, the KTGF approach does not include physics
known to be critical to segregation in dense granular flows such as the dependence of segregation
on the local pressure [18]. Nevertheless, a potential path toward a robust drag model for dense flows
lies in modifying the KTGF drag model based on empirical results for density segregation in dense
granular flows.

In this paper, we derive expressions for the segregation velocity in density-bidisperse granular
flow by combining the particle interspecies drag and the equilibrium momentum balance equation
from mixture theory [1] using two different approaches to model the interspecies drag. One approach
integrates particle-particle collisional force within the framework of KTGF, while the other adopts
the form of a particle-fluid viscous force based on a modified Stokes law. Both models are described
in Sec. II. The effects of the local inertial number, particle friction, and relative species concentration
proposed in the KTGF drag model are tested separately by DEM simulations in Sec. III. In
Sec. IV, the viscous drag coefficient is determined and the granular flow rheology for calculating
the pseudoviscosity of the mixture is discussed. In Sec. V, results of both segregation models are
compared with DEM simulations for flows under more general conditions. Conclusions are given
in Sec. VI.

II. DRAG MODELS AND SEGREGATION VELOCITY

For dense granular flows, the total solids volume fraction, φsolid = ∑
φi, where φi represents

the local volume fraction of each solid species (here i = h for heavy particles and i = l for light
particles), is around 0.6. The local constituent concentration is ci = φi/φsolid and the solid density
is ρsolid = ∑

ρici, where ρi is the particle material density. The gradient of the lithostatic pressure
P is

∂P

∂z
= −ρsolidφsolidg, (1)

where z is the vertical coordinate (assuming negative z is the gravity direction) and g is the
acceleration due to gravity.

The partial pressure Pi is determined by partitioning the lithostatic pressure P induced by gravity
among the two constituents such that P = ∑

Pi. For particles that only differ in density, we assume
that the proportion of the hydrostatic load carried by each species equals its concentration ci

regardless of the density difference as proposed by Marks et al. [15] and Tunuguntla et al. [4].
The momentum balance for each species can be written as [4]

∂

∂t
(ρiφiui ) + ∇ · (ρiφiui ⊗ ui ) = −ci∇P + ρiφig + βi, (2)
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where ⊗ is the dyadic product, t is time, ui is the vector velocity, and βi is the interspecies drag
vector. (Equation (2) is similar to Eq. (2.5) in Ref. [4], noting that the intrinsic density ρ i∗ in Ref. [4]
is the bulk density of particles in a nonmixed state, which is equal to ρiφsolid, and that ρ i = ciρ i∗ is
equivalent to ρiφi used here.) Assuming that the vertical acceleration terms are negligible [4,29],
which is reasonable for the relatively slow segregation in a typical granular flowing layer, the
momentum conservation equation in the z direction can be simplified using Eq. (1) to

(ρsolid − ρi )φig + βi = 0. (3)

Equation (3) is analogous to a simple force balance between the net buoyant force (ρsolid − ρi )φig
and the interspecies drag force βi.

A. KTGF-based model

To determine constituent velocities from Eq. (3), βi must be expressed as a function of the
velocity difference between the two species, and the KTGF offers a means to do this. Changes to
the KTGF are needed, however, because it was developed to model rapid flow of dilute granular
materials based on instantaneous binary collisions [30,31]. This is not the case in the dense
flow regime where enduring contacts dominate and many adjacent particles are part of contact
force chains [32]. Correlations in motion and force due to the dense contact network reduce the
collisional energy dissipation [33]. Substantial effort has been expended to extend the applicability
of the KTGF to the dense regime, mainly by modifying the expression for the collisional energy
dissipation rate to account for the effects of sustained contacts [34–38]. In fact, an augmented
KTGF approach has been proposed for segregation problems, but it is limited to small size and
density differences [39,40]. In addition, several stand-alone drag models based on the KTGF have
been proposed for dilute granular flows [22–28].

Here we follow an approach similar to one of these KTGF drag models [28] by assuming
that the long-duration collisional drag in dense flows follows similar physics to the short-duration
collisional drag in dilute flows, but with a much longer contact time. This can be represented by
correction coefficients modifying the well-known solid-solid drag model proposed by Syamlal [23]
that has been successfully used for fluidized bed simulations [41–43]. We choose the Syamlal drag
model [23] over other models for two reasons. First, within the KTGF framework the interspecies
drag at the continuum level is derived by integrating the momentum transfer between two particles
over the velocity space. Thus, the dependence of drag on particle density has a physical basis at
the particle level. Second, the drag model is derived by assuming all the particles of each type
have identical velocities such that velocity fluctuations are not considered, making a closed-form
expression for the drag easy to obtain.

The Syamlal expression for the local drag βi between two constituents i and j is

βi = −
[

3(1 + e)

2π
(
ρid3

i + ρ jd3
j

)(
π

2
+ μπ2

8

)]
gi jρiρ jφiφ j (di + d j )

2|ui − u j |(ui − u j ), (4)

where gi j is the radial distribution function for a collision between particle i and j [44], μ is
the interparticle friction coefficient, and e is the restitution coefficient. For density segregation,
di = d j , and gi j becomes a constant if we assume constant total solid volume fraction φsolid. The
bulk velocity in the vertical direction of the combined constituents is wbulk = ciwi + c jw j based on
volume conservation. The segregation, or percolation velocity wp,i, for species i is defined as the
velocity difference between the constituent velocity and the bulk velocity in the z direction:

wp,i = wi − wbulk = c j (wi − w j ). (5)
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Using Eq. (5) in Eq. (4) for bidisperse granular mixtures of heavy and light particles having the
same diameter d , the interspecies drag in the segregation (z) direction is

βi = −
[

3(1 + e)

(
1 + μπ

4

)
gi j

][
ρhρlφi

(ρh + ρl )φ j
φ2

solid
|wp,i|

d
wp,i

]
. (6)

The Syamlal model in Eq. (6) is derived by assuming that the particles of each type have identical
velocities, so velocity fluctuations (i.e., the granular temperature) are not explicitly considered in
the expression. We choose the Syamlal model over granular temperature dependent drag models
knowing that in dense granular flows the Maxwellian velocity distribution is no longer valid and
that the pressure-shear state, rather than the granular temperature, determines flow behavior [45].
However, Eq. (6) indicates that the two particle species would segregate even without the presence
of shear, which, of course, does not occur. There are several ways to rationalize this. For example,
Gera et al. [46] extended the Syamlal model to dense fluidized beds by adding a “hindrance effect”
term related to friction and pressure, such that the momentum exchange has to exceed a threshold
to drive the segregation. Here we take a heuristic approach based on the μ(I ) rheology [47–49],
accounting for local flow conditions by introducing the inertial number I , defined as

I = γ̇ d

√
ρsolid

P
, (7)

where γ̇ is the local shear rate. A small value of I (small γ̇ and/or large P) corresponds to the
quasistatic regime where granular flows behave more like deforming solids. Conversely, a large
value of I (large γ̇ and/or small P) corresponds to the collisional regime where granular flows
behave more like fluids. Based on simulation data that we describe in detail later in this paper, we
propose a semiempirical interspecies drag model of the form

βi = −B(μ)︸ ︷︷ ︸
enduring contacts

KTGF︷ ︸︸ ︷[
ρhρlφi

(ρl + ρh)φ j
φ2

solid
|wp,i|

d
wp,i

]
1

I2︸︷︷︸
local flow

local
concentration ratio︷︸︸︷√

φh

φl
, (8)

for density-bidisperse granular flows with inertial number I < 0.5, corresponding to dense granular
flow, and particle concentration, 0.1 � ci � 0.9.

Among the four multiplicative terms in Eq. (8), the KTGF term is inherited from the Syamlal
model in Eq. (6) and reflects the momentum transfer between two particles with different masses,
taking into consideration density and diameter at the particle level, while the other three terms are
semiempirical modifications. B(μ) replaces the first term in square brackets in Eq. (6) to account for
enduring contacts in dense flows. In dense granular mixtures short-duration collisions are unlikely
to play as important of a role as in the dilute flows upon which Eq. (6) for KTGF is based. As
a result, we assume the empirical function B(μ) is independent of e. Previous studies show that
the segregation velocity wp,i is proportional to the inertial number I at constant βi [18,19], so the
inertial number appears as 1/I2 in Eq. (8) to account for the local flow conditions. Finally, the last
term

√
φh/φl accounts for the nonlinear dependence of segregation on particle concentration (i.e.,

heavy particles among many light particles segregate faster than light particles among many heavy
particles [21]), as it increases the drag with increasing φh/φl . Detailed justifications for these three
modifying terms are provided in Sec. III.

The ultimate goal of this paper is to develop an accurate model for the segregation velocities of
the light and heavy particle species in density-bidisperse granular flows. Such an expression can
be readily derived by substituting the expression for the interspecies drag βi from Eq. (8) into the
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equilibrium momentum balance of Eq. (3). For light particles,

(ρsolid − ρl )gφl︸ ︷︷ ︸
net buoyant forces

−

interspecies drag βl , Eq. (8)︷ ︸︸ ︷
B(μ)

ρhρlφl

(ρl + ρh)φh

φ2
solid

d

(
wp,l

I

)2
√

φh

φl
= 0, (9)

such that wp,l takes the form

wp,l =
[

gd

B(μ)φsolid

(
Rρ − 1

Rρ

)√
cl

ch

]1/2

(1 − cl )I, (10)

noting that φh/φl = ch/cl and that Rρ = ρh/ρl is the density ratio. For heavy particles, a similar
approach yields

wp,h = −
[

gd

B(μ)φsolid

(
Rρ − 1

Rρ

)√
cl

ch

]1/2

(1 − ch)I. (11)

Note that Eqs. (10) and (11) apply to density-bidisperse granular flows with I < 0.5 (dense
flows), and particle concentrations, 0.1 � ci � 0.9 (as opposed to situations approaching a single
intruder particle at concentrations outside this range). Equations (10) and (11) indicate that wp,i ∝√

Rρ − 1
Rρ

, which is similar to the relation wp,i ∝ (
√

Rρ − 1√
Rρ

) observed in monodisperse systems

with several heavy intruder particles [19]. Equations (10) and (11) also resemble the general form
of the segregation velocity given by Fry et al. [18]

wp,i =
√

gd f (Rρ )(1 − ci )I, (12)

by making

f (Rρ ) =
[

1

B(μ)φsolid

(
Rρ − 1

Rρ

)√
cl

ch

]1/2

. (13)

These similarities suggest that the drag model proposed in Eq. (8) is reasonable and consistent
with previous research.

B. Modified Stokes law-based model

For purposes of comparison, we also consider an alternative approach based on a viscous drag
model [11,12]. As an analogy to the viscous force acting on a particle settling in a fluid, Tripathi
and Khakhar [12] propose a modified Stokes viscous drag force, Fvisc = επηdwp,i, where ε is an
empirically determined drag coefficient that depends on the solid volume fraction φsolid, and the
pseudoviscosity η of the granular mixture is assumed to be the origin of the drag. This differs
from the KTGF approach where the drag is assumed to be a direct consequence of particle-particle
interactions. The conceptual difference leads to different expressions for the segregation velocity.
Using the expression for the modified Stokes drag force, the interspecies drag can be expressed as

βvisc,i = Fvisc
1
6πd3/φi

= 6εηφiwp,i/d2. (14)

Substituting this expression into the momentum balance equation, Eq. (3), the segregation velocities
take the form

wvisc,l = gd2

6εη
(ρh − ρl )(1 − cl ) (15)
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FIG. 1. Schematic of DEM simulation setup.

and
wvisc,h = − gd2

6εη
(ρh − ρl )(1 − ch). (16)

Comparison of these two equations with Eqs. (10) and (11) for the modified KTGF drag model
are enlightening. Both forms depend on gravity, and particle size, density, and concentration.
While the KTGF form is slightly more complicated, it only requires one empirical function, B(μ).
However, the challenge in applying the viscous segregation model is to empirically determine the
drag coefficient ε(φsolid) and the pseudoviscosity η of the granular mixtures. Both forms depend on
the inertial number I , either directly for the KTGF model or indirectly through the determination of
η for the viscous drag model, as will be shown in Sec. IV.

III. CONFIRMING THE MODIFIED KTGF DRAG MODEL

In this section, we validate the interspecies drag model in Eq. (8) by performing DEM simulations
under a variety of conditions. Direct measurement of βi from DEM simulations is difficult since both
the segregation driving forces and the drag forces result from interparticle collisional forces; it is
hard to distinguish them at the particle level. A better way to determine βi is to utilize momentum
conservation at force equilibrium, Eq. (3), in which βi equals −(ρsolid − ρi )φig, a quantity that is
easily measured locally in a granular flow. This is equivalent to validating the segregation model in
Eqs. (10) and (11), noting that all of the variables in these equations except B(μ) are known (i.e.,
Rρ , φsolid, d) or can be calculated from the simulation (i.e., wp,i, I). Hence, the problem comprises
finding B(μ) under a variety of local flow conditions, I , and local concentration ratios, ch/cl .

In the DEM simulations, a density-bidisperse mixture of d = 4 mm spherical particles with
collision time tc = 1.25 × 10−4 s is sheared between top and bottom horizontal frictional planes
in a domain with periodic boundary conditions in the streamwise (x) and spanwise (y) directions as
shown in Fig. 1. The massive planar top wall moves horizontally with constant velocity U and is
free to move vertically. The position of the top wall is determined by the wall weight and contact
forces from the top layer of particles. The distance between the top and bottom walls h remains
relatively constant (fluctuating by ±2%) after an initial rapid dilation of the particles at flow onset.
The domain extends about 70d , or 0.28 m, in the streamwise direction and 10d , or 0.04 m, in the
spanwise direction. The weight of the top wall is based on the configuration of the system so that the
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TABLE I. Simulation conditions.

d 4 mm
Rρ = ρh/ρl 1–10
μ 0–0.6
ch, cl 0.1–0.9
e 0.1–0.9
U 1–5 m/s
u Uz/h, Uz2/h2, Ue2.3(z/h−1)

γ̇ U/h, 2Uz/h2, 2.3Ue2.3(z/h−1)/h

overburden pressure applied by the wall to the system is Pwall = 0.05ρsolidφsolidgh for all cases in this
study. There are 36864 particles in the system, differentiated by their densities (ρh for heavy particles
and ρl for light particles having density ratio Rρ = ρh/ρl ). The initial dense packing is achieved by
placing particles in a grid pattern and letting them settle under gravity. The depth of the flow h
in the vertical z direction is approximately 50d or 0.2 m, and the volume fraction ratio (φh/φl ) or,
equivalently, the concentration ratio (ch/cl ), is approximately uniform across the domain. Varying
ch/cl or ρh/ρl in the simulations causes the segregation velocity to vary. Over 200 simulations are
performed over the wide range of flow conditions and particle properties listed in Table I.

To achieve specific shear rate profiles, the corresponding velocity profile is imposed on the
particles by applying a streamwise stabilizing force on each particle k at every time step according
to

Fstabilize,k = Ks[u(zk ) − uk], (17)

where u(z) is the imposed velocity profile, uk is the particle’s streamwise velocity, zk is the particle’s
vertical position, and Ks is a gain parameter. Details of the approach for the imposed velocity profile
are provided elsewhere [18]. Three different profiles are considered: u = Uz/h, Ue2.3(z/h−1), and
Uz2/h2. The first and second profiles correspond to those for uniform shear [18] and free surface
flow down a heap [50], respectively. The third profile reflects a situation that sometimes occurs in
shear flows where the shear rate vanishes at a rough bottom wall [51].

The simulation domain is divided into 20 horizontal layers for averaging purposes; each layer is
2.5d in the z direction. The streamwise mean velocity profile for a density segregation simulation
0.1 s after flow onset is shown in Fig. 2 for each of the three imposed velocity profiles. Due
to the stabilizing force, the mean velocity matches the imposed profile, with a shear rate that
is either uniform (γ̇ = U/h) or decreases through the depth of the particle bed [γ̇ = 2Uz/h2,
2.3Ue2.3(z/h−1)/h]. The different symbols in Fig. 2 represent heavy and light particles, which have
similar streamwise velocities. Slight deviations from the imposed velocity profiles occur within 5d
of the top and bottom boundaries due to particle ordering adjacent to the flat walls [51,52]. Here, we
focus on the flow away from the walls to avoid artifacts related to these bounding walls. Companion
simulations with bumpy walls (particles attached randomly on flat walls [53]) show little difference
with simulations using flat walls for the particles between 0.3 � z/h � 0.7.

To characterize the evolution of the segregation, we measure the average center of mass height
for each species relative to the mean height of all particles, which is calculated as

z̄i = 1

Ni

Ni∑
k∈i

zk − 1

N

N∑
k=1

zk, (18)

where Ni and N are the number of particles of species i and the total number of particles in the
horizontal averaging layer, respectively. Figure 3(a) shows the offset of the center of mass from
its initial position for both heavy and light particles in horizontal layers at three vertical locations,
z/h = 0.3, 0.5, and 0.7, for a uniform shear flow (u = Uz/h). The offset is represented by the
segregation distance 
z̄i = z̄i − z̄i,0, where z̄i,0 is the initial center of mass. As the segregation
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FIG. 2. Instantaneous streamwise velocity ui of each constituent for mixed light (+) and heavy (©)
particles averaged in each horizontal layer 0.1 s after shear onset. Dashed curves represent the velocity profiles
imposed using the forcing specified in Eq. (17). (dh = dl = 4 mm, ch = cl = 0.5, μ = 0.2, e = 0.9, and
Rρ = 4.)

progresses from shear onset, heavy particles move downward while light particles move upward.
Due to solid volume conservation, 
z̄l + 
z̄h = 0. Since the shear rate is uniform across the domain
for the simulation data shown in Fig. 3, the different segregation rates in the three different layers are
a consequence of the overburden, or lithostatic, pressure [18]. A higher overburden pressure, which
corresponds here to deeper bed depth (small z/h), reduces the segregation. Different segregation
rates at different vertical positions are also found for the flows with the two nonlinear velocity
profiles. However, in these cases, the depth-varying segregation rate results from a combination of
shear rate and overburden pressure, since the shear rate now also varies with depth.

Confined granular mixtures under shear (Fig. 1) initially segregate rapidly with a nearly constant
segregation velocity [18]. This is because for a short period after the flow is initiated, the local
particle concentration has not yet changed enough to affect the segregation, resulting in a relatively
high segregation velocity, while at later times the particles reach a steady segregated state where
the segregation velocity is negligible. We focus on the initial rapidly-segregating transient. The
initial segregation velocity is slow enough that the 1 s sampling window used here falls within the
interval of rapid segregation (≈10 s). The linear profile of the segregation distance versus time in
Fig. 3(a) indicates the minimal effect of concentration change on the segregation velocity. Except for
some segregation that occurs in the top layer of particles, the local concentration of heavy particles
remains at its initial value of 0.5 ± 0.05 during the sampling window as shown in Fig. 3(b). Note that
after 1 s of shear there are no strong gradients in the concentration, indicating that diffusive fluxes
are unimportant, which is assumed in this approach. The segregation velocity of each constituent is
calculated from the slope of data like that in Fig. 3(a) as wp,i = (
z̄i,1 ± εi,1)/
t , where 
z̄i,1 is the
offset at the end of the 
t = 1 s sampling window and εi,1 is the standard error in the calculation of

z̄i,1, which is represented by the error bars at time t slightly less than 1 s in Fig. 3(a).

By considering many thin horizontal layers, the local segregation velocity profile can be
measured, as shown in Fig. 3(c) for three sample cases of uniform shear flow. The segregation
velocity increases with both increasing density ratio and shear rate. For each case, the segregation
velocity decreases from top to bottom even though the shear rate and density ratio do not vary with
depth. This decrease is proportional to the local inertial number in Fig. 3(d), which decreases with
depth due to increasing pressure. This is a consequence of the overburden pressure P increasing with
depth, consistent with previous results [18]. Note that the sum of segregation velocities of heavy and
light particles should equal zero due to volume conservation for ch = cl = 0.5. Figure 3(c) indeed
demonstrates that the segregation velocities are nearly equal (and, of course, opposite). The slight
difference between wp,l and −wp,h is likely caused by a small amount of segregation during the
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FIG. 3. Determining the segregation velocity. (a) Average center of mass displacement 
z̄/d time series
at different vertical positions under uniform shear (γ̇ = U/h = 25 s−1, Rρ = 8, ch = cl = 0.5, μ = 0.2, and
e = 0.9). (b) The heavy particle concentration profile remains relatively constant 1 s after shear onset for the
flow in Fig. 3(a). (c) Segregation velocity profiles for light particles wp,l (×) and heavy particles wp,h (©) are
calculated as the average rate of change of 
z̄ over the first 1 s of the simulation for flows with different density
ratios and shear rates (ch = cl = 0.5, μ = 0.2, and e = 0.9). Both shear rate γ̇ and density ratio Rρ affect
the segregation velocity profile. Error bars represent the uncertainty in determining 
z̄ and wp,h. (d) Inertial
number profiles for the flows in Fig. 3(c). The local inertial number is estimated as I = γ̇ d/

√
φsolidg(1.05h − z)

by substituting the local overburden pressure P = Pwall + ρsolidφsolidg(h − z) into Eq. (7).

initial filling process before the start of the shear flow. The error bars represent uncertainties in the
measurement of the slope in Fig. 3(a).

From the momentum balance equation, Eq. (2), the convection term in the z direction ∂
∂z (ρiφiw

2
i ),

which can be estimated from the simulation results, is three orders of magnitude less than the net
buoyant force −ci

∂P
∂z − ρiφig (noting that the constituent velocity wi is equal to the segregation

velocity wp,i since the bulk velocity in the z direction is zero). Likewise, the unsteady term
∂
∂t (ρiφiwi ) is also negligible. This confirms that the system is in steady state during the sampling
window and that the segregation velocity results from the balance between the net buoyant force
and the interspecies drag as indicated by the simplified momentum expression in Eq. (3).

A. Inertial number dependence

The inertial number dependence in the proposed drag model, Eq. (8), requires that the segregation
velocity is linear in I [Eqs. (10) and (11)]. Therefore, to verify the drag model, segregation velocities
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FIG. 4. Segregation velocities of light particles vs. local inertial number I at different depths for nonlinear
velocity profiles (a) u = Uz2/h2 and (b) u = Ue2.3(z/h−1) for simulations with U = 2 m/s, Rρ = ρh/ρl ∈
{2, 4, 10}, ch = cl = 0.5, μ = 0.2, and e = 0.9. Dashed lines are linear fits for each density ratio, demon-
strating a linear dependence of wp,l on I . Error bars represent the uncertainty in determining wp,l as indicated
in Fig. 3.

of light particles wp,l at different depths are plotted versus I for different density ratios Rρ in
Fig. 4 for flows with nonlinear streamwise velocity profiles. Similar results are also found for the
segregation velocity of heavy particles wp,h since wp,h ≈ wp,l for flows with ch = cl = 0.5. The
linear relation between wp,i and I in Fig. 4 for varying γ̇ and P (expressed in terms of varying I)
confirms the assumed dependence on I and is consistent with results from previous studies [18,19].
That is, the segregation velocity depends linearly on I for each density ratio. The error bars are
somewhat large, consistent with the difficulty in accurately measuring wp,i as indicated in Fig. 3.
Nevertheless, a line can be fit through the data at each density ratio. Furthermore, the fitting lines
are quite similar for both nonlinear velocity profiles.

The segregation velocity data, however, do not show as clear a linear dependence on I when
plotted in the same way for uniform shear flows, as illustrated in Fig. 5(a). This is because unlike
the other two nonlinear velocity profiles [u = Uz2/h2 and Ue2.3(z/h−1)], the local inertial number in
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3

0 0.05 0.1 0.15 0.2

FIG. 5. Segregation velocities of light particles wp,l for 0.2 � z/h � 0.8 vs. (a) inertial number I and
(b) modified inertial number I∗ = √

I2 − I2
0 for simulations with particle properties given in Fig. 4 but for

uniform shear rate profiles with γ̇ = 5 s−1 (©), 15 s−1 (�), and 25 s−1 (♦). I0 is the cutoff inertial number at
which density segregation effectively ceases [18]. The dashed line in both figures is identical and a linear fit to
the data in (b). Error bars represent the uncertainty in determining wp,l as indicated in Fig. 3(c).
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a uniform shear flow is not zero or close to zero at the bottom wall. Instead, in the case of the linear
velocity profile (u = Uz/h), segregation is forced to cease at the fixed bottom wall because of the
wall itself. To account for the cessation of density segregation at the bottom wall, we use a modified
inertial number for uniform shear flows,

I∗ =
√

I2 − I2
0 , (19)

where I0 is the inertial number at which density segregation effectively ceases. According to
Fig. 3(c), segregation ceases at z/h ≈ 0. Therefore, we assume I0 is the inertial number at that
location, such that I0 = γ̇ d

√
ρbulk/P0 with P0 = ρbulkgh + Pwall. Modifying I with Io in Eq. (19)

forces wp,i to 0 at the bottom wall and brings the nonlocal effect of boundaries into the proposed
model. An alternative approach for considering the boundary is to solve a second state variable
related to the velocity fluctuations (i.e., “granular temperature” in KTGF [30] or “granular fluidity”
in the nonlocal rheology of Ref. [54]) from an independent equation supplied with boundary
conditions such that the boundary effect is considered implicitly in the drag. However, rheology
models such as μ(I ) and KTGF have different coefficients for different particle properties, which
requires simulation data to find those coefficients first. Furthermore, the boundary condition that
determines the “heat flux” (i.e., particle velocity fluctuations induced by boundaries) into the system
often involves fitting parameters [55], which makes it harder to generalize the model. As such, we
do not consider velocity fluctuations here. Instead, the modified inertial number is used to correct
the segregation near the boundary. As shown in Fig. 5(b), using I∗ instead of I collapses the data
for uniform shear flows such that the dependence of wp,i on I∗ is close to linear. Note that for the
two nonlinear velocity profiles I∗ equals I since I0 ≈ 0. From here on, unless otherwise specified,
we drop the asterisk on I and use the corrected inertial number [Eq. (19)].

Figures 4 and 5(b) show that wp,i depends linearly on I for varying shear profiles, shear rates, and
density ratios. This confirms βi ∝ I−2 in Eq. (8) since equating the buoyant and drag forces gives
wp,i ∝ I in Eqs. (10) and (11). The linear relation between wp,i and I is also consistent with previous
results in free surface flows. Consider, for example, heap flows, in which the flowing layer thickness
is about eight particle diameters [50,56]. For such a thin layer with the local shear rate decreasing
exponentially with depth, the overburden, or lithostatic, pressure can be treated as a uniform
parameter, and the linear relation between wp,i and I can be reduced to a linear relation between
wp,i and γ̇ d [57,58]. However, for a thick flowing layer with a uniform shear rate, the segregation
velocity at different depths in the flowing layer is only affected by the overburden pressure so long
as we consider segregation away from the upper and lower bounding walls. The effect of lithostatic
pressure has to be included, resulting in a dependence of wp,i on I [18,19]. We further note that in
our previous work [18], we proposed a form for I∗ in terms of a critical pressure that is equivalent
to Eq. (19). However, it should be noted that at larger inertial numbers (I > 0.5) [19], instantaneous
binary collisions dominate over enduring contacts, resulting in a rheological change from dense to
rapid dilute granular flow. In the latter regime, the linear relation between wp,i and I is likely to be
invalid.

B. Density ratio dependence

As shown in Fig. 4, wp/I increases with density ratio Rρ . Equations (10) and (11) indicate that
wp/I is proportional to

√
Rρ − 1/Rρ . To demonstrate this dependence, wp,l/I , calculated as the

slope of the fitting lines in Figs. 4 and 5(b), is plotted versus Rρ in Fig. 6. The dashed curve in Fig. 6
represents the predictions of Eq. (10) with B(μ = 0.2) = 700. (We characterize the dependence of
B on μ in Sec. III D.) Indeed, wp,l/I is proportional to

√
Rρ − 1/Rρ over the wide range of Rρ

tested (1.3 � Rρ � 10) in different flow profiles where I varies due to changes in both P and γ̇ .
Agreement between the curve and the data confirms the dependence of the drag model on particle
densities and, equivalently, the functional dependence of wp,i on Rρ in Eqs. (10) and (11).
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FIG. 6. wp,l/I vs. Rρ for simulations with 1.3 � Rρ � 10, μ = 0.2, e = 0.9, and ch = cl = 0.5. Colors
and symbols represent simulations with γ̇ = U/h (©), 2Uz/h2 (×), and 2.3Ue2.3(z/h−1)/h (�). Dashed curve
shows the dependence of wp,i/I on Rρ from Eq. (10) with B(μ) = 700.

C. Concentration ratio dependence

A recent study [21] indicates that segregation in mixtures of heavy and light particles has an
underlying asymmetry that depends on local particle concentration, similar to mixtures where
particles differ in size [20,21]. Specifically, a heavy particle among mostly light particles segregates
faster than a light particle among mostly heavy particles. The last term

√
φh/φl , on the right-hand

side of the drag model in Eq. (8) accounts for the nonlinear dependence of segregation velocity
on particle concentration. To confirm this term, we rewrite Eq. (10) using wp,l = ch(wl − wh) from
Eq. (5), such that ch on the left-hand side and (1 − cl ) on the right-hand side cancel and the equation
becomes

(wl − wh)2 = 1

B(μ)

gd

φsolid

(
Rρ − 1

Rρ

)
I2

√
cl

ch
. (20)

According to Eq. (20), wl − wh, based on the proposed drag model of Eq. (8), should depend
linearly on (cl/ch)1/4. To test this dependence, we keep particle densities and other simulation
parameters constant, but vary ch from 0.01 to 0.99 for uniform shear flow. Figure 7 plots the

normalized velocity difference between the two species 
ŵ = wl −wh
I

√
φsolid

gd (Rρ − 1
Rρ

)−1, excluding

B(μ) because μ, and hence B(μ), is the same for all simulations included in the figure, as a function
of cl/ch for uniform shear flows. Note that (wp,l − wp,h)/I is calculated using the slope of the
fitting line through the data at different depths like that in Fig. 5(b). This avoids propagating the
random error evident in these figures as the deviation of the data points for individual simulations
from the fitting line. From Fig. 7 it is evident that 
ŵ depends linearly on (cl/ch)1/4 for ci in the
range 0.1 to 0.9. Outside of this range the number of particles of each species decreases to a point
where the segregation velocity of the low concentration species is difficult to accurately determine.
As a result, the uncertainty of 
ŵ is large for cl/ch < 0.1. Apart from the large uncertainty, the
relative velocity and the concentration are uncorrelated for ci < 0.1. This is because the segregation
of the low concentration species is tending toward that in the single particle intruder case. For
intruder particles, the concept of concentration loses its physical meaning, and the continuum
assumption required by the approach in this paper is no longer valid. For example, the difference in
the segregation velocities between a single intruder case and a ten-intruder case is minimal as long
as the intruders are well separated by the bed particles. The concentration increases by ten times,
but the relative velocity remains constant. Nonetheless, Fig. 7 confirms the linear relation between
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FIG. 7. Normalized velocity difference between species 
ŵ vs. concentration ratio cl/ch for simulations
with Rρ = 4, μ = 0.2, e = 0.9, and γ̇ = U/h = 25 s−1. Error bars represent uncertainty in determining 
ŵ.
Strong correlation between 
ŵ and cl/ch is found for 0.1 � cl , ch � 0.9 (©), as opposed to situations
approaching a single intruder particle at concentrations outside this range, cl , ch � 0.1 or ch, cl � 0.9 (©).
Solid line with slope 0.25 is consistent with the slope of the data, confirming the dependence of the drag model
on particle concentrations for 0.1 � cl , ch � 0.9.


ŵ and (cl/ch)1/4 used in Eqs. (10) and (11), and thus the proposed form of the KTGF drag model
[Eq. (8)] for flows with 0.1 � ci � 0.9.

D. Friction and restitution dependence

The functional form for B(μ) characterizing the dependence of the drag on particle friction in
Eqs. (8), (10), and (11) is difficult to derive analytically due to the complex particle interactions
typical of dense granular flows. Instead, DEM simulations under a variety of flow conditions
are used to empirically determine B(μ) and demonstrate that it is independent of the restitution
coefficient e.

Consider first e, which characterizes energy dissipation in short-duration collisions. We vary e
from 0.1 to 0.9 for uniform shear flow while keeping all other parameters unchanged, such that
the damping coefficient of the linear-spring-dashpot collision model used in the DEM simulations
varies accordingly. The segregation velocities for both light and heavy particles at z/h = 0.5 for
the case with ch = cl = 0.5 and Rρ = 8 are plotted versus e in Fig. 8(a) for three different friction
coefficients μ. Although there is some scatter in the data, it is clear that wp,i is independent of
e, regardless of μ, as is reasonable to expect for dense granular mixtures in which short-duration
collisions are unlikely to play as important of a role as in dilute flows.

For dense granular mixtures, enduring contacts dominate, and stresses are generated by long-
duration sliding and rolling contacts. Unlike e, the surface friction coefficient μ has significant
impact on wp,i as shown in Fig. 8(b). The particle segregation velocity generally decreases as μ

increases at different bed depths. Note that wp,i measured from DEM simulations is affected by not
only μ but also the μ dependent initial packing, which adds more uncertainties resulting in scatter in
the data. Nevertheless, the overall trend of decreasing segregation velocity with increasing friction
remains evident.

In this context, B(μ) is determined through a series of DEM simulations for uniform shear flow
with different density ratios Rρ and friction coefficients μ. Since the dependence of drag on the
other parameters has been verified, it is possible to determine the functional form for B(μ) from
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FIG. 8. Dependence of segregation velocities wp,i on contact parameters. (a) Light (×) and heavy (©)
particle segregation velocities are nearly independent of restitution coefficient e at z/h = 0.5 with μ = 0
(black), 0.1 (red), and 0.4 (blue). (b) Particle segregation velocity decreases as μ increases for z/h = 0.3 (red),
0.5 (blue), 0.7 (black) with e = 0.9. Rρ = 8, ch = cl = 0.5, and γ̇ = U/h = 25 s−1.

Eq. (10),

B(μ) = gd

φsolid

(
Rρ − 1

Rρ

)√
cl

ch
(1 − cl )

2/
(wp,l

I

)2
. (21)

In applying Eq. (21), the slope of the fitting line in Fig. 5(b) is again used for wp,l/I . We estimate

B(μ) by plotting gd
φsolid

(Rρ − 1
Rρ

)
√

cl
ch

(1 − cl )2 versus (wp,l/I )2 over a range of density ratios for three

values of μ in Fig. 9(a). The slope of the data at each μ gives the corresponding value of B(μ).
By measuring the slopes of different sets of data with 0 � μ � 0.6, we empirically determine

the dependence of B(μ) on μ. The results are plotted in Fig. 9(b) for several values of e for uniform
shear flow. For bidisperse mixtures with a small friction coefficient (μ < 0.3), B(μ) is linearly
proportional to μ. For larger values of μ (0.3 � μ � 0.6), the relation for B(μ) remains linear but
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FIG. 9. Determining B(μ). (a) gd
φsolid

(Rρ − 1
Rρ

)
√

cl
ch

(1 − cl )2 vs. (wp,l/I )2 for uniform shear flows with Rρ ∈
{1.5, 2, 3, 4, 5, 6, 7, 9, 10} and three different μ values. B(μ) is determined by the fitted slope of the dashed
lines, which are forced through zero (ch = cl = 0.5, γ̇ = 25 s−1, and e = 0.9). (b) B(μ) vs. μ based on 243
simulations. Different symbols correspond to e = 0.6 (×), 0.8 (�), and 0.9 (©) for uniform shear flows.
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FIG. 10. Viscous drag coefficient ε calculated from Eq. (15) vs. solid volume fraction φsolid for different
flow configurations and friction coefficients. The dashed line indicates the mean value ε = 1.73.

with a smaller slope. There is slightly more scatter for different values of e at larger μ. Note that
B(μ) = 700 from Fig. 9(b) is consistent with the value used in Fig. 6 to calculate wp,i/I .

The interspecies drag is a combination of normal and tangential forces resulting from long-
duration contacts. When μ = 0, the tangential forces vanish. Thus, B(μ) 	= 0 means that inter-
species drag of smooth particle systems is entirely due to normal forces. Figure 9(b) shows that
B(μ) increases with μ. That is, increasing friction increases the interspecies drag, thereby reducing
the segregation velocity. This is contrary to observations from size segregation, where part of the
segregation driving force comes from interparticle friction, such that increasing friction coefficient
promotes the segregation of large particles [59]. A possible explanation is that the friction force adds
to the segregation driving force in size segregation, which overcomes the resultant increase in the
interspecies drag. Alternately, for particles having different densities but the equal size, the friction
force has no impact on the segregation driving force but adds to the drag.

Note that Eqs. (10) and (11) are not limited to specific velocity profiles even though B(μ) is
empirically determined using the data from uniform shear flows with ch = cl = 0.5. B(μ) is merely
a coefficient to account for the particle frictional properties. Thus, the KTGF drag model of Eqs. (10)
and (11) is generally applicable to predict density segregation in any dense segregating granular
flow.

IV. PARAMETERS FOR THE VISCOUS DRAG MODEL

The viscous drag model of Eqs. (15) and (16) has previously been described in detail [12], so
here we merely determine the coefficients ε and η so we can apply the model for comparison to the
KTGF segregation model. The shear stress τ and shear rate γ̇ from the DEM simulations can be
used to estimate the granular pseudoviscosity η (η = τ/γ̇ ). This in turn allows the calculation of the
empirical viscous drag coefficient ε from Eqs. (15) and (16). Figure 10 plots ε versus solid volume
fraction φsolid for different flow configurations and friction coefficients, μ. ε is relatively constant,
having a value of about 1.7 for 0.57 � φsolid � 0.61. This value is somewhat lower than that from
a previous study [12], in which ε decreases from 3.7 to 2.5 as φsolid increases from 0.51 to 0.58 for
intruder particles in chute flow.

Equations (15) and (16) also require an expression for η, which can be written in terms of the
effective friction coefficient μeff = τ/P, such that

η = μeff
P

γ̇
. (22)
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FIG. 11. Effective friction coefficient μeff vs. local inertial number I for different combinations of density
ratio Rρ , heavy particle concentration ch, and shear rate γ̇ with e = 0.9 and U = 2 m/s. Different colors and
symbols represent simulations with μ = 0.5 (top) and μ = 0.2 (bottom). The solid curve shows the prediction
of Eq. (23) with μs = 0.364, μ2 = 0.772, and Ic = 0.434 for data from a previous study on chute flow [60].
The dashed curve shows the prediction of Eq. (23) with μs = 0.3, μ2 = 0.68, and Ic = 0.4 for data from this
study.

According to the μ(I ) rheology [61], μeff is a function of the inertial number I;

μeff = μs + μ2 − μs

Ic/I + 1
. (23)

The three rheological parameters μs, μ2, and Ic are material-specific, and need to be independently
determined for each value of interparticle μ. The effective friction coefficient μeff estimated from
DEM simulations (μeff = τ/P) is plotted as a function of I for μ = 0.2 and 0.5 in Fig. 11. For
the set of data with μ = 0.5, we validate our calculation by comparing the simulation results to the
predictions of Eq. (23) with μs = 0.364, μ2 = 0.772, and Ic = 0.434 from a previous study on chute
flow [60]. For the other set of data with μ = 0.2, Fig. 11 provides the relation between μeff and I
for different combinations of density ratio Rρ , concentration ch, shear rate γ̇ , and vertical location
in the simulation. The data collapse on a curve with some outliers for uniform shear flows due to
the discontinuity in local shear rate near the wall. μeff for μ = 0.2 is somewhat smaller than that for
μ = 0.5, demonstrating the μ(I ) rheology dependence on interparticle friction μ. This is expected,
noting that μs is related to the inclination angle for steady chute flows. Increasing μ results in a
higher inclination angle and hence larger μs. For μ = 0.2, Eq. (23) with μs = 0.3, μ2 = 0.68, and
Ic = 0.4 agrees well with the data in Fig. 11. We also observe that Rρ , ch, and γ̇ have little influence
on the μ(I ) relation, consistent with previous results for chute flows [60].

V. SEGREGATION VELOCITY MODEL PREDICTIONS

With the empirical terms of both segregation velocity models determined, we now compare the
predictions of Eqs. (10), (11) and Eqs. (15), (16) to the segregation velocities measured in the DEM
simulations. For the KTGF drag model [Eqs. (10) and (11)], the global values for d , φsolid, cl , ch,
Rρ , and the empirically determined form of B(μ) are used in the model along with local values of I
at each depth in the flow. The local inertial number I is based on the overburden pressure, estimated
as P = Pwall + ρsolidφsolidg(h − z), such that I can be expressed as a function of vertical position z
according to Eq. (7) (or, equivalently, Eq. (19) for uniform shear flows). For the segregation model
based on the modified Stokes viscous drag force [Eqs. (15) and (16)], the global values for d , cl , ch,
ρl , ρh, and the empirical value for ε are used along with the local values for η based on the μ(I )
rheology in Eq. (23) at each depth.
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FIG. 12. Predicted segregation velocity profiles from modified KTGF drag model [Eqs. (10) and (11)]
(solid curves) and viscous drag model [Eqs. (15) and (16)] (dashed curves) compared to DEM simulation
data for light (×) and heavy (©) particles under (a) uniform (γ̇ = U/h) and (b) varying shear rate profiles
[γ̇ = 2Uz/h2, 2.3Ue2.3(z/h−1)/h] with different density ratios. μ = 0.2, ch = cl = 0.5, and e = 0.9.

Figure 12(a) compares the particle segregation velocity profiles predicted by the KTGF drag
model [Eqs. (10) and (11)] and the viscous drag model [Eqs. (15) and (16)] with those measured
from DEM simulations of uniform shear flows in Fig. 3(c). Both models represent the simulation
data reasonably well. Considering that the segregation velocities for z/h < 0.2 and z/h > 0.8 in the
simulations are affected by the accumulation of segregating particles near the bounding walls. The
KTGF drag model seems to handle wall influence slightly better than the viscous drag model, most
likely because of the use of the modified inertial number that accounts for the nonlocal effect of
the boundaries. Without further modification to the μ(I ) rheology, the viscous drag model does not
include the nonlocal effect of the boundaries.

A more rigorous test of the model is to consider flows with varying shear profiles [γ̇ = 2Uz/h2,
2.3Ue2.3(z/h−1)/h]; see Fig. 12(b). The close match between the KTGF segregation model prediction
and the data demonstrates that Eqs. (10) and (11) are also effective for flow with nonuniform shear
rates, even though B(μ) in the model was derived from flow with uniform shear rate (γ̇ = U/h).
The segregation model based on the viscous drag is also successful except near the upper wall due
again to nonlocal effects.

Figure 13 provides a similar comparison where the concentration ratio ch/cl is varied while
keeping other parameters constant for uniform shear. In this case, the segregation velocities for
heavy and light particles differ from one another when the concentration of the two species is
unequal, as expected [21]. Again, the estimated segregation velocities using both drag models match
the DEM data reasonably well. The segregation model based on the viscous drag represents the near
collapse of the data for wp,l in Fig. 13(a) slightly better than the KTGF segregation model. However,
the KTGF segregation model works somewhat better for wp,h in Fig. 13(b), particularly near the
upper and lower walls. Thus, we conclude that the new segregation model [Eqs. (10) and (11)]
based on the interspecies drag term derived from analogy with KTGF can be used as an alternative
to the viscous drag model to estimate the segregation velocities of both light and heavy species
through the depth of the flowing layer under a variety of flow conditions.

Unlike the confined shear flows discussed to this point, the shear rate and the concentration ratio
of many free surface flows vary across the domain. To further test the KTGF drag model under
these more general conditions, we consider quasi-two-dimensional bounded one-sided heap flow
in which particles flow in a thin surface layer down a slope much like what occurs when filling
a silo [57,62–64]. Figure 14 shows segregation velocities from heap flow DEM simulations [56]
versus (cl/ch)1/4(1 − ci )I , since, according to Eqs. (10) and (11), these two variables are linearly
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FIG. 13. Predicted segregation velocity profiles from modified KTGF drag model [Eqs. (10) and (11)]
(solid curves) and viscous drag model [Eqs. (15) and (16)] (dashed curves) compared to DEM simulation data
under uniform shear for (a) light and (b) heavy particles with heavy particle concentration ch =0.3, 0.5 and 0.7
(cl = 1 − ch). μ = 0.2, Rρ = 8, γ̇ = 25 s−1, and e = 0.9.

related when all other conditions are equal. The difference between these results and those presented
up to this point is that these results correspond to a wide range of shear rates and concentrations, all
occurring simultaneously in the flowing layer of the heap. The solid lines in Fig. 14 are based on
the KTGF drag model, the data points represent DEM results [56], and the dashed lines represent
least squares fits through the data points. Overall, the segregation velocities of both bounded heap
flows are reasonably well predicted by the model. However, since segregation in heap flows mainly
occurs in a thin layer at the free surface, the averages are more uncertain, so the data have substantial
scatter, especially for the weakest segregation case with Rρ = 1.84 and d = 3 mm in Fig. 14(a). The
case with a small particle diameter d = 2 mm but large density ratio Rρ = 3.3 has overall larger wp,i

such that the DEM results match the theoretical predictions of Eqs. (10) and (11) better, as shown
in Fig. 14(b). Note that we only include the heap flow data for 0.1 � ch, cl � 0.9 to match the
concentration range for flows in which our proposed KTGF drag model is valid.
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FIG. 14. Segregation velocities from DEM heap flow simulations (points) [56] for (a) Rρ = 1.84, μ = 0.2,
e = 0.9, and d = 3 mm, and (b) Rρ = 3.33, μ = 0.2, e = 0.9, and d = 2 mm. Dashed lines are linear fits to
the data, and solid lines are predictions of the model based on the KTGF drag model.

044301-18



SEGREGATION MODELS FOR DENSITY-BIDISPERSE …

10-1 1 101

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

FIG. 15. Dependence of segregation length scale SD on the density ratio Rρ from DEM simulations (circles)
for segregation in a bounded heap flow [56] compared to predictions of (a) the empirical fit of Eq. (26) and
(b) Eq. (25) derived from the KTGF drag model with ch/cl = 1, μ = 0.2 and different values of the mean
pressure in the flowing layer P/(ρbulkgd ).

As Fig. 14 shows, the segregation model based on the KTGF drag we propose in this paper works
reasonably well not only for the confined shear flow between two planes from which it is developed,
but also for free surface flow in a bounded heap. Previous results [56] suggest that the segregation
velocity can be modeled as

|wp,i| = ŜDγ̇ (1 − ci ) (24)

for bounded heap flow with inlet concentration cl = ch = 0.5. Equations (10) and (11) have this
form when ŜD, the segregation length scale, is

ŜD

d
=

[
1

B(μ)φ2
solid

(
Rρ − 1

Rρ

)√
cl

ch

(
ρbulkgd

P

)]1/2

, (25)

where ρbulk = ρsolidφsolid is the bulk density. For free surface flows, the empirically determined
segregation length scale SD is well approximated by [56]

SD

d
= CDlnRρ, (26)

where CD = 0.081. The empirical relation and the underlying data are shown in Fig. 15(a).
To compare SD and ŜD it is necessary to account for the pressure and particle concentration ratio,

as well as other flow conditions. The comparison is made by first assuming cl/ch = 1, which is the
feed concentration ratio in these simulations, such that ŜD is no longer concentration dependent.
Furthermore, in heap flows, segregation occurs in a thin flowing layer, with a thickness of only a
few particle diameters, in which the local shear rate decreases exponentially with depth while the
scaled local pressure P/(ρbulkgd ) increases linearly from 1 at the surface to δ/d at the bottom of the
flowing layer at depth δ, assuming constant ρbulk. The mean shear rate of the flowing layer equals
the local shear rate at a depth of 0.26δ due to the exponential streamwise velocity profile. This depth
corresponds to approximately 2d for 7d � δ � 8.5d [56]. By assuming the exponentially varying
local shear rate is the dominant factor for the depth varying segregation velocity, we expect that the
effective pressure is equivalent to the pressure at a depth of about 2d such that P/(ρbulkgd ) = 2. For
comparison, P/(ρbulkgd ) = 1 and 3 are also considered.

The expression for ŜD from Eq. (25) for ch/cl = 1 and three different pressures is compared to
bounded heap flow results [56] in Fig. 15(b). The data match the model curve well for P/(ρbulkgh) =
2. Again, the results in Fig. 15(b) demonstrate the success of the KTGF drag model in replicating
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a wide range of results, even down to the slight curvature evident in the data matching that of the
curve corresponding to Eq. (26).

As for the viscous drag model, it is possible to combine Eqs. (15), (16), (22), and (23) and rewrite
the expression for the segregation velocity,

wvisc,i = gd2

6ε

ρ j − ρi

P

1

μs + μ2−μs

Ic/I+1

(1 − ci )γ̇ . (27)

Noting that Eq. (27) has the same form as Eq. (24) [56], we can extract an expression for ŜD,visc,

ŜD,visc

d
= gd

6ε

|ρi − ρ j |
P

1

μs + μ2−μs

Ic/I+1

. (28)

However, the resulting expression indicates that ŜD,visc depends on pressure directly (inversely) and
also through dependence on I , which depends on pressure. Assuming a simple linear dependence
of pressure on depth (P = ρbulkgz) results in values of ŜD,visc that are quite a bit larger than those
that have been measured in DEM simulations of heap flow [56]. The reasons behind this are beyond
the scope of this study, but may be related to applying parameters for the μ(I ) rheology extracted
from the shear flow in Fig. 1 to the free surface flow occurring on a bounded heap. In any case, it
is difficulty to further compare ŜD,visc to previous heap simulation data, as was done for the KTGF
drag model in Fig. 15.

VI. CONCLUSION

In this paper, we propose a semiempirical predictive model, Eqs. (10) and (11), for the
segregation velocities of light and heavy particle species in density-bidisperse granular flows that is
based on a new model for the interspecies drag in segregating dense flows, Eq. (8). The interspecies
drag model assumes that the multiple long-duration particle interactions in dense granular flows
reflect similar physics to short-duration binary particle interactions typical of dilute granular flows,
which have been successfully modeled using the kinetic theory of granular flows (KTGF) [30,31].
Of course, particle segregation depends on the pressure-shear state, which can be characterized
by the inertial number I . In particular, I is inversely proportional to the square root of pressure,
which can significantly reduce the segregation velocity [18]. In addition, the segregation depends
nonlinearly on the local particle concentration: heavy particles among many light particles segregate
more quickly than light particles among many heavy particles [21]. Finally, particles in dense
granular flows experience enduring contacts characterized by interparticle friction, which is in
contrast to dilute granular flows where particle contacts are short and dominated by the elastic
properties of the particles. Hence, the restitution coefficient e has little influence on segregation in
the dense flows considered here.

One advantage of the proposed KTGF drag model for dense granular flows [Eq. (8)] is that it links
interspecies drag to segregation velocity and includes the effects of local flow conditions, I , local
concentration ratio, ch/cl , and particle properties including density, size, and surface friction, μ.
The segregation velocities derived from combining the interspecies drag model with the equilibrium
momentum balance equation match the segregation velocities determined from DEM simulations
in both confined shear and free surface heap flows as well as the modified viscous drag force model
proposed by Tripathi and Khakhar [12], which is analogous to the viscous force acting on a particle
settling in a fluid. Either approach allows calculation of segregation velocities through the depth of
the flowing layer for different density ratios and relative constituent concentrations.

Despite these advances, the KTGF drag model proposed here is not without drawbacks. The
segregation velocities predicted from Eqs. (10) and (11) for the KTGF drag model as well as those
predicted from Eqs. (15) and (16) for the viscous drag model, while showing the right trends, are
only reasonable estimates, as is evident from the scatter in the DEM simulation data from the model
predictions in Figs. 12–14. This is likely a result of the many variables in the problem, as well
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as the stochastic nature of the forces on individual particles that drive the segregation and the
concurrent collisional diffusion, which is not taken into account in either approach. Furthermore,
both approaches require empirical inputs. The KTGF drag model requires an empirical relation,
B(μ), that reflects dependence on interparticle friction; the viscous drag approach requires an
empirical value for the coefficient of drag, ε, as well as appropriate values for the μ(I ) rheology,
which, in turn, depend on the interparticle friction. Thus, in either case, the underlying challenge
lies in relating interparticle friction to the rheology of the flow.

Nevertheless, the results in Fig. 15 demonstrate a remarkable correspondence between the
segregation velocity model and the simulation data for the KTGF drag model, particularly since
the data are for a different flow than that from which the model was derived. More research is
needed under even more widely varying conditions to refine both models, particularly with respect
to the influence of interparticle friction. Furthermore, both models are limited to density-bidisperse
granular materials. A more challenging problem is to connect the interspecies drag to the segregation
velocity for size-bidisperse particles, or, even more difficult, particles that differ in both size and
density.
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