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Granular materials are characterized by large collections of discrete particles, where the particle-
particle interactions are significantly more important than the particle-fluid interactions. The current
kinetic theory captures fairly accurately the granular flow behavior in the dilute case, when only
binary interactions are significant, but is not accurate at all in the dense flow regime, where multi-
particle interactions and contacts must be modeled. To improve the kinetic theory results for granular
flows in the dense flow regime, we propose a Modified Kinetic Theory (MKT) model that utilizes
the contact duration or cutoff time to account for the complex particle-particle interactions in the
dense regime. The contact duration model, also called TC model, was originally proposed by Luding
and McNamara [“How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC
model,” Granular Matter 1, 113 (1998)] to solve the inelastic collapse issue existing in the inelastic
hard sphere model. This model defines a cutoff time tc such that dissipation is not counted if the time
between two consecutive contacts is less than tc. As shown in their study, the use of a cutoff time tc
can also reduce the dissipation during multi-particle contacts. In this paper we relate the TC model
with the Discrete Element Method (DEM) by choosing the cutoff time tc to be the duration of contact
calculated from the linear-spring-dashpot soft-sphere model of the DEM. We examine two types of
granular flows, simple shear flow and the plane shear flow, and compare the results of the classical
kinetic theory model, the present MKT model, and the DEM model. We show that the MKT model
entails a significant improvement over the kinetic theory model for simple shear flows at inertial
regimes. With the MKT model the calculations are close to the DEM results at solid fractions as
high as 0.57. Even for the plane shear flows, where shear rate and solid fraction are inhomogeneous,
the results of the MKT model agree very well with the DEM results. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4979632]

I. INTRODUCTION

The study of granular flow is of interest in a wide variety
of fields in fundamental and applied science, including indus-
trial flows (pneumatic conveying and fluidized bed reactors)
and environmental flows (sand dunes and snow avalanches).
Granular matter under rapid flow conditions is most commonly
modeled as a continuum phase. The kinetic theory, supple-
mented with numerical simulations, is considered to be one of
the best tools to describe the behavior of granular flows. Var-
ious forms of the classical kinetic theory have been derived
for a system under the assumption that only instant binary
collisions occur.2–4 This assumption is satisfied in relatively
dilute regimes, where the volume fraction of solid particles
varies between 0 and 0.49.5 The classical kinetic theory models
exhibit a general good agreement with numerical simulations
following the discrete element method (DEM).6–8 However,
in the dense regime, where sustained multi-particle contacts
are significant, the simulation results based on the classical
kinetic theory model are not accurate, especially at very high
solid fractions.5,9

a)Electronic mail: zhigang.feng@utsa.edu

Most of the granular flows with practical interest are
dense flows. Two approaches have been proposed to model
granular flows in the dense regime: The first is entirely phe-
nomenological and makes use of dimensional analysis to iden-
tify the dimensionless parameters that govern the problem. The
solution of this approach includes algebraic relations between
those parameters (i.e., the granular local rheology).10–13 How-
ever, this approach is not systematic and is limited to very dense
and steady cases, such as chute flows. The second approach
is more fundamental and is based on the kinetic theory. Part
of this approach is to include a frictional force, borrowed
from soil mechanics, to the constitutive relations of the clas-
sical kinetic theory. The frictional force takes into account
the effects of particulate contacts near the maximum packing
density of the material.14,15 Studies have shown that granu-
lar flow involves a reduced collisional dissipation rate and an
increased collision frequency in the dense regime.16–18 The
simplest way to account for this effect is to modify the radial
distribution function and energy dissipation term in the energy
conservation equation.

Among the modifications to the energy dissipation rate,
one is the Extended Kinetic Theory (EKT) proposed by
Jenkins and co-workers,19–21 which involves the incorpora-
tion of a length-scale other than the particle diameter in the
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expression for the rate of collisional dissipation. This revised
model includes a material coefficient of unclear meaning,
which is considered to be a weakness of the theory by a few
researchers.13 Other modifications for denser systems such as
those by Chialvo and Sundaresan5,9 which are based on the
DEM simulations of homogeneous simple shear flow include
the following: (a) an effective restitution coefficient to capture
the increased granular energy dissipation rate due to friction;22

(b) a new expression for the radial distribution function at
contact;23 and (c) a chain length to account for the reduced
granular energy dissipation rate.21 As a result of the modi-
fications, the theoretical predictions of the models based on
the kinetic theory show good agreement with the numerical
data of the DEM simulations. Most of the modifications to
the kinetic theory models apply or have been only verified for
steady uniform shear flows and homogeneous cooling pro-
cesses. Because of the nature of practical systems such as
fluidized beds, one expects that the granular temperature, the
shear rate, and the solid volume fraction are unsteady nonho-
mogeneous parameters that vary across the flow domain. In
addition, some constitutive laws such as the proportional rela-
tion between the shear stress and the square of the strain-rate
(i.e., the Bagnold’s scaling)24 are not applicable in flows with
a non-uniform shear rate.25 Therefore, the modifications of the
kinetic theory based on simple shear flow simulations may not
be suitable for non-uniform flows; a more general modification
of kinetic theory will be needed for these cases.

Similar to the kinetic theory model, the Inelastic Hard
Sphere (IHS) also assumes that the collisions are instantaneous
and uncorrelated. For this reason, the results of IHS simula-
tions and kinetic theory solutions typically agree very well.
However, the kinetic theory and the IHS start to deteriorate as
the solid fraction of a granular flow increases because of the
overestimate of energy dissipation during particle collisions.
Luding and McNamara1 addressed this problem by introduc-
ing a contact duration. A particle has the memory of its last
contact, so a new contact occurring within tc (the contact dura-
tion) after the last contact is a multi-particle contact and has
no further energy dissipation (TC model).1,26 tc is a number
that modifies the amount of dissipation due to collisions. How-
ever, the question of how to choose the proper value of tc for
a specific granular flow system has not been studied.

The DEM model mimics a real system where the particle
collision is a process that takes finite time to complete. There-
fore, in the DEM model the kinetic energy may be converted
into the elastic potential energy during the contact. This elas-
tic, potential energy is not dissipated. The main contribution of
this paper is to use the DEM model to determine the amount of
elastic energy that needs to be detained in the modified kinetic
theory (MKT). Since the elastic potential energy in the DEM
is related to the spring constant which determines the collision
contact time tDEM and the cutoff time tC in the extended IHS
is used to modify the energy dissipation, we propose the use
of tDEM as the cutoff time tC in the MKT. This allows us to
calculate the elastic potential energy in the MKT model that
exists in the dense region. We further extend the MKT to exam-
ine simple shear flows and plane shear flows at a high solid
volume fraction, compare the results of the classical kinetic
theory model, the present MKT model, and the DEM model,

and evaluate its applicability and limitations. The aim of this
paper is to provide such a general modification to the kinetic
theory when it is applied to the dense flow regions. This paper
also addresses the observed higher estimate of energy dissipa-
tion rate of granular inhomogeneous flows at high solid volume
fractions when the binary collision assumption of the kinetic
theory is no longer valid. Overall the MKT model is a signif-
icant improvement over the classical kinetic theory model for
all the cases we have studied. It is capable to produce results
that are close to the DEM results at solid fractions as high
as 0.57, when the flow is still in the inertial region. Even for
plane shear flows, where the shear rate and the solid fraction
are non-homogeneous, the MKT results agree very well with
the DEM results

II. THE KINETIC THEORY OF GRANULAR FLOW

In modeling particulate or granular flows, the kinetic the-
ory is commonly used to obtain the constitutive relations for
the particulate phase. The most commonly used kinetic theory
models have been derived for dilute flows of smooth, fric-
tionless spheres and are basically extensions of the classical
kinetic theory of non-uniform gases.2,27,28 One important dif-
ference between particles and gas molecules is that the kinetic
energy is conserved in the elastic molecule collisions, but not in
inter-particle collisions because these collisions are inelastic.
In the context of kinetic theory, a single-particle distribution
function f (v, x, t) governs the macroscopic properties of solid
particles. Hence, the hydrodynamic governing equations of
motion are obtained by the appropriate transformations of the
time evolution equation for f (v, x, t). The distribution function
for the positions and velocities of smooth spheres is described
as follows:

∂f
∂t

+ v · ∇f = J
[
f , f

]
, (1)

J
[
f , f

]
= d2

∫
dv2

∫
Θ (g · n) (g · n)

×

[
1

e2
f2

(
v′1, x1, v′2, x1 − dn, t

)
− f2 (v1, x1, v2, x1 + dn, t)

]
dn, (2)

where e is the particle restitution coefficient, d is the particle
diameter, f2 is the pair-distribution function, and J

[
f , f

]
is the

collisional term. At time t, velocities v1 and v2 of two particles
are, respectively, changed to v′1 and v′2 by the collision. The
relative velocities g = v1 − v2 and n is the unit vector from
the center of particle 1 to that of particle 2. The Heaviside
step function Θ assures that the relative velocities g are such
that a collision takes place. From these expressions, we may
obtain the balance equations for mass, momentum, and energy
by multiplying m, mv, and mv2/2 to the kinetic equation and
integrate over the velocity space v, as shown in the following
equations:29

∂ρ

∂t
+ ρ∇ · u = 0, (3)

ρ
Du
Dt

+ ∇ · σ = 0, (4)
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TABLE I. Summary of the model equation.49

p∗ = 1 + 2 (1 + e)φg0

p = ρφTp∗

Γ = 12√
πd
ρφ2g0

(
1 − e2

)
T

3
2 K

τ = −2ηS − γδij∇ · u

c∗ =
32(1−e)

(
1−2e2

)
81−17e+30e2(1−e)

ζ0
∗ =

5
12 g0(1 − e2)(1 + 3

32 c∗)

γ∗ = 128
5π φ

2g0(1 + e)(1 − c∗
32 )

ηk
∗ =

[
1 − 2

5 (1 + e) (1 − 3e)φg0

]
/(νη∗ −

1
2 ζ

0 ∗)

η∗ = ηk∗
[
1 + 4

5φg0(1 + e)
]

+ 3
5γ
∗

η0 =
5

16d2

(
mT
π

) 1
2 ,η = η0η

∗,γ = γ∗η0

q = −κ∇T − µ∇φ

ν∗k =
1
3 (1 + e) g0

[
1 + 33

16 (1 − e) + 19−3e
1024 c∗

]

κk∗ = 2
3

{
1 + 1

2 (1 + p∗) c∗ + 3
5φ (1 + e)2

[
2e − 1 +

(
1
2 (1 + e) − 5

3(1+e)

)
c∗
]}
/(ν∗k − 2ζ0∗)

κ0 =
15
4 η0, κ = κ0κ

∗

µk∗ =

{(
1 + φ dg0

dφ

)
ζ0∗κk∗ +

(
p∗

3 + 2
3φ (1 + e)

(
g0 + φ dg0

dφ

))
c∗ − 4

5φg0

(
1 + φ

2
dg0
dφ

)
(1 + e) (e (1 − e)

+ 1
4

(
4
3 + e (1 − e)

)
c∗

)}
/(2ν∗k − 3ζ0∗)

µ∗ = µk∗
[
1 + 6

5φg0(1 + e)
]

µ = πd3Tκ0/6φ

3
2
ρ

DT
dt

+ ∇ · q + σ : ε + Γ = 0. (5)

In the last set of equations u = 〈v〉= 1
n ∫ f (v, x, t) vdv is the

mean velocity of the flow; V = |v − u| is the magnitude of
the particles’ fluctuating velocity; ρ, σ, ε are the density, the
stress, and strain rate tensor of solid phase, respectively, and
T = 1

3 〈V
2〉 = 1

n ∫
1
3 V2f (v, x, t) dv is the average fluctuating

kinetic energy, expressed as the granular temperature.
The above conservation equations are supplemented by

the constitutive relations for the stress, energy flux, and energy
dissipation rate, which are expressed as functions of these
fields,

σij = m
∫

ViVjf (v, x, t) dv, (6)

q =
m
2

∫
VV2f (v, x, t) dv, (7)

Γ = −
m
2

∫
|v|2J (f , f ) dv. (8)

To solve this system of equations, first an approximate form of
the function f (v, x, t) is defined. Then the adoption of paired
distribution function f2(v1, x1, t1; v2, x2, t3) is used to predict
the collisional term, J

[
f , f

]
. The time evolution equation of

the particle distribution function is then solved approximately
for f (v, x, t). Finally, the transport coefficients are calculated.
In our calculations we adopt the solution procedures from the
work of Garzó and Dufty30,31 which are formulated for smooth,

frictionless moderately inelastic particles in the dilute regime.
In the absence of external forces, the constitutive relations of
the model are given in Table I.

III. THE TC MODEL AND THE MODIFIED
KINETIC THEORY

The standard approaches for the kinetic theory are derived
by assuming that the kinetic energy of particles is only dissi-
pated through binary, instantaneous collisions between par-
ticles. These approaches accurately capture the granular flow
behavior in dilute flows but fail to do so for dense flows, where
multi-particle collisions and finite-duration contacts are of sig-
nificance. Because the kinetic theory does not account for the
duration of contact in a dense regime, with the increase of col-
lision frequency a particle can experience multiple collisions
within a very short time. Since each collision incurs dissipa-
tion based on the kinetic theory, a significant overestimate of
energy dissipation results. The event-based hard sphere (HS)
model also suffers the same problem. In contrast, the soft-
sphere DEM model requires a duration of contact for each
collision, which makes it more realistic. In order to extend the
kinetic theory to the dense flow regime, we consider the parti-
cle collision as a finite time process. Hence, we may apply the
corresponding modifications to the kinetic theory to account
for the more complex particle interactions.

Several researchers used the HS or IHS model to study
particulate flows. In the IHS model, the particles are assumed
to be perfectly rigid and to follow an undisturbed motion until
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a collision occurs. Due to the rigidity of the interaction, the
collisions occur instantaneously. In such cases an event-driven
simulation method may be used. There are a few shortcomings
with this method, namely, the inelastic collapse of particles,
the neglect of multi-particle interactions, and the absence of
the static limit. It was pointed out that all three problems have
essentially one origin: the potential used between the centers
of mass of the two colliding particles is artificially stiff.1 To
address these issues, Luding and Goldshtein26 extended the
IHS model by defining a duration of contact tc, such that the
dissipation of energy is allowed only if the time between inter-
particle contacts is larger than tc. The physical explanation
for this is that there is a fraction of the total energy (e.g., the
elastic potential energy) that is not dissipated for such a colli-
sion. When a system is very dense, the assumption of instant
and binary collisions adopted in the classical kinetic theory is
no longer valid. In this case, both the kinetic theory and the
IHS cannot capture the enduring contact process and will over-
predict the collision rate due to the unphysical stiffness, thus
overestimating the energy dissipation rate. The dimension-
less time ratio τc = tc/tE measures the existence of enduring
and multi-body contact. Here, tE is the inter-collision time as
predicted by kinetic theory. In order to capture the elastic defor-
mation process within a finite contact time, the implementation
of the TC model in the IHS is simply to reset restitution coef-
ficient e to 1 if a particle has a previous collision within a
given tc. This non-dissipative fraction is absent in all the ideal-
ized models such as hard-sphere, IHS, and the classical kinetic
theory. Naturally, it leads to the over-prediction of the energy
dissipation rate. As a result, a correction function, K , is mul-
tiplied to the dissipation term to account for the overestimate
caused by multi-body collisions at high solid fractions, while
the structure of the resulting theory remains the same. The cor-
rection function K is a function of the granular temperature T
and the dimensionless time ratio τc = tc/tE. Thus K is also the
ratio of the kinetic energy to the total energy of kinetic energy
and elastic potential energy. The contact duration tc should be
related to the particle properties. The average time between
collisions tE is obtained from the kinetic theory as follows:

t−1
E =

12
d
φg0

√
T
π

, (9)

where d is the particle diameter, g0 is the radial distribution
function that is given in the Appendix, and φ is the solid
volume fraction.32–34 To verify Eq. (9), we compared it with
another expression proposed by Kumaran17 which is based on
the DEM simulation results, as shown in Fig. 1. It is observed
in the figure that the two equations produce very similar results
up to φ= 0.62, where their difference is 7%.

The correction function K may be derived from the prob-
ability of elastic collisions in a granular flow system.1 We let
the function p (tc) be the probability of a single particle that
has no collision in the previous time interval tc and its collision
frequency is given as t−1

E , so the probability of this particle to
have no collision in the next dt interval is

p (tc + dt) = p (tc)
(
1 − t−1

E dt
)

. (10)

A first order Taylor expansion of above equation yields

p (tc) = exp (−τc) . (11)

FIG. 1. The scaled collision frequency ν∗ as a function of volume fraction
φ. Comparison between Eq. (9) and the expression derived by Kumaran17

(Eq. 3.24 in his paper) based on the DEM simulation data, ν∗ = 11.039
(0.64−φ) .

The probability function p (tc) can be used to measure the frac-
tion of “inelastic” particles in the system. Therefore, the total
fraction of inelastic collisions in the system will be

K = p (tc)2 = exp *
,
−24

tc
d
φg0

√
T
π
+
-

. (12)

By fitting the kinetic theory results with the IHS results
for the Homogeneous Cooling State (HCS) case, Luding
and Goldshtein26 obtained an empirical correlation for the
function K,

K = exp (ψ (x)) , (13)

ψ (x) = −1.268x + 0.016 82x2 − 0.000 578x3 + O
(
x4

)
, (14)

x =
√
πτc. (15)

Figure 2 shows the comparison between the derived func-
tion K from the kinetic theory in Eq. (12) and the empirical
expression Eq. (13) from the HCS hard sphere simulation in
Ref. 1. In general the two expressions match very well. A slight

FIG. 2. K from Eq. (12) (solid lines) and the fitting expression of Eq. (13)
(dashed lines) at different T.



043302-5 Duan et al. Phys. Fluids 29, 043302 (2017)

difference is observed when the solid volume fraction or gran-
ular temperature is large. The difference is probably caused
by the radial distribution function. For both equations, K is
small at high granular temperature T and large solid fraction,
φ, which is reasonable since the increase of granular temper-
ature or the increase of solid volume fraction can increase
the mean velocity of particles or shorten the mean free path
between collisions and reduce the collision interval, making
multi-body contacts prevail. From Eq. (12) we can see that if
the solid volume fraction φ and the granular temperature T are
very small, the scaled collision ratio τc will be close to zero
and K will be close to one, reducing to the classical kinetic
theory. In the dense region where the solid volume fraction φ
is large, the values of radial distribution function g0 are high,
and K is much less than one, implying a significantly reduced
dissipation rate. Similarly, increasing granular temperature T
can also reduce K , but not as significantly as changing φ. Even
at a low solid friction, high granular temperature in a system
may also cause the failure of the kinetic theory.

As shown in Eq. (12), the correction function K strongly
depends on the cutoff time tc. In the original study for the HCS
case, tc is an adjustable parameter and it is chosen to match
the kinetic theory results with the model results.1

The inelastic collapse occurs in the IHS model but not
in the DEM model because the DEM permits a duration of
contact, tDEM , during a collision. On the other hand, the value
of tc used in the MKT model is also a measure of the contact
duration, so it has to be related to tDEM . For a linear spring-dash
collision model, we have

tDEM = π

(
2kn

m
−
γ2

n

4

)−1/2

, (16)

where kn is the normal spring constant and γn is the damp-
ing coefficient.35 If we make tc = tDEM and the particles have a
larger spring constant kn, it is apparent that the contact duration
tc will become small and K will be close to one. Therefore,
the MKT resembles the classical kinetic theory at high stiff-
ness. In Sec. IV we evaluate the MKT model with the use of
tc = tDEM and compare its results with those obtained by the
kinetic theory model and the DEM model.

IV. RESULTS AND COMPARISONS WITH DATA

Due to the macroscopic size of the particles, external
fields such as gravity would have a much stronger effect on
granular flows. It is difficult to experimentally investigate the
flow behavior of granular materials under shear in diluted
to moderately dense regions. Instead, the Discrete Element
Method (DEM) with a soft-sphere collision scheme is con-
sidered to be a more realistic model in modeling granular
flows. The method uses a Lagrangian scheme to track each
individual particle. The particles interact via a linear spring-
dashpot (LSD) model, which gives the normal and tangential
forces on a particle i caused by its contact with a particle j as
follows:

Fn
ij = knδij − γnmeff vn

ij, (17)

F t
ij = −ktu

t
ij − γtmeff vt

ij, (18)

where δij is the overlap distance and kn and kt are the spring
coefficients in the normal and tangential directions. vn

ij and
vt

ij are relative velocities in normal and tangential directions.
The parameter meff = mimj/(mi + mj) is the effective mass of
the two particle masses mi and mj. It has been reported that
the contact dynamics of the particles are not very sensitive
to the ratio kt/kn.35,36 In this study we chose the values kt/kn

= 2/7 and γt = 0. The latter implies that there is no rotational
velocity damping term in our simulations. If all the forces
acting on the particle i are known, the problem is reduced
to the integration of Newton’s equations of motion for the
translational and rotational degrees of freedom,

mi
d2

dt2
ri = Fi, (19)

Ii
d
dt
ωi = T i. (20)

The position vector and angular velocity of particle i are ri

and ωi, respectively. Ii is the spherical particles moment of
inertia. Fi and Ti are the force and toque by collisions. The
DEM simulation time step ∆t compared with the particle col-
lision time tDEM must be small in order to resolve accurately
the particle collision process. For the computations we chose
∆t < tDEM/50, a practice successfully followed by others.35–37

The MFIX package,38 which is available from the National
Energy Technology Laboratory (NETL), was used to perform
both the DEM and the continuum modeling simulations. The
particles in the system were randomly distributed at t = 0, and
the initial velocity distribution function was a Maxwellian
distribution.

A. Homogeneous shear flow

Granular shear flows are quite complex; the hydrody-
namic flow fields can be unsteady and vary across the flow
domain. For the DEM simulations, a uniform shear rate can be
imposed via the Lees-Edwards boundary condition.39 Even for
homogeneous shear flow, depending on the mechanics of parti-
cle contact, two regimes are distinguished: the first one is called
inertial regime where the stresses arise from nearly instan-
taneous, binary collisions. The second one is called elastic
or quasi-static regime where sustained multi-particle contacts
prevail and the stresses are observed to be independent of shear
rate. Only the reduction of solid concentration can cause a
transition from an elastic regime to an inertial regime. Camp-
bell40 found that the granular flow behavior and flow regimes
could be determined using k

ρd3γ2 and φ, as shown in Fig. 3.
The kinetic theory works in the inertial regime with very low
solid fractions because all particle interactions are binary and
the transport rate is governed by the time between collisions
and, thus, by the granular temperature. However the theory
fails as the solid fraction increases and the flow gets close to
the inertial no-collisional regime. In the elastic regime where
more than two particles are in simultaneous contact, transport
can occur between the particles through elastic waves travel-
ling across the contact points—a rate which is governed by the
elastic properties and not by the granular temperature.40

Chialvo and Sundaresan9 conducted the DEM simulations
of simple shear flows with a solid volume fraction ranging from



043302-6 Duan et al. Phys. Fluids 29, 043302 (2017)

FIG. 3. Flow maps of the various flow regimes as presented by Campbell;40

t′DEM shows the averaged particle contact time in simulations and tDEM is the
theoretical binary contact time. Intermediate regime (i.e., elastic-inertial) only
exists when k/ρd3γ2 is in certain range.

0.1 to 0.636 and covering both dilute and dense regimes. The
simulation setup was accomplished by placing 2000 particles
on a simple cubic lattice in a periodic box under uniform shear.
The coefficient of restitution e, a property of particles colli-
sions, varies from 0.7 to 0.99. Figure 4 shows the comparison
of results between the classical kinetic theory model and the
DEM model. It is clear that the kinetic theory results match
well with the DEM results at low solid fractions (φ ≤ 0.4)
where the flows are in the dilute regime. However, as the solid
fraction increases to 0.5 or above, the results of kinetic the-
ory model start to deviate from the DEM results, especially
when the coefficient of restitution is high. This is expected
since the kinetic theory model is built on the particle binary
collision assumption and it fails in dense regimes where multi-
particle collisions become more frequent. Hence, for flows in
the regime of high solid fractions, the kinetic theory has to be
modified to relax the binary collision assumption.

FIG. 4. The ratio of granular fluctuation energy to shear rate, T/ (γ̇d)2, versus
the solids fraction φ in the uniform shear flow. The solid lines show the theo-
retical predications by the KT. The dashed lines represent results by the current
MKT and the discrete points represent the data from the DEM simulations of
simple shear flow.9

We apply the MKT model with tc = tDEM to study these
cases. Figure 4 also compares the MKT results with the DEM
results. It is seen that the MKT may capture well the trend
of the increasing T/ (γ̇d)2 from dilute to moderately dense
flow regimes up to solid fractions of 0.57. However, at very
high solid fractions the system moves away from the inertial
regime to the elastic regime, where many particles act together
as force chains. In this case, the granular flow behaviors are
no longer characterized by the particle collisions, and external
forces are distributed through filament-like clusters of parti-
cles. The MKT predictions no longer agree with the DEM
results.

The principal aim of the MKT model is to account for
the effect of the elastic potential energy in the system that
does not dissipate. This fraction of the elastic potential energy
can be close to or even larger than the kinetic energy in the
elastic regime.41 In the moderate dense regime, the accuracy
of the MKT may deteriorate but it can still be valid when the
system only has a small fraction of the elastic potential energy.
However, the MKT eventually will fail when the fraction of
the elastic potential energy becomes very large. In our case,
the fraction of elastic potential energy is larger than 45% at
a solid fraction of 0.57 and the MKT can still get reasonable
predictions compared to the DEM results. We can also show
the amount of the elastic potential energy in the system using a
measured average contact time t ′DEM in the DEM simulations.
The ratio of this measured contact time t ′DEM and the theoretical
binary contact time tDEM should be used as a probe to determine
the flow regime shown in Fig. 3.40 The ratio should be one if no
multi-particle collisions exist. From Fig. 3 we can see that this
ratio increases from 1 to 1.5 while flow remains in the inertial
regime. The high ratio of t ′DEM/tDEM indicates a significant
amount of multi-particle collisions or a large amount of elastic
potential energy. A significant departure from the rapid flow
behavior was observed when t ′DEM/tDEM = 2 at a solid fraction
of 0.57 in another study.42

It must be pointed out that the non-dimensional param-
eter k

ρd3γ2 is considered to be proportional to the square of

the ratio of the free-flight time between shear-rate-induced
particle-particle contacts and the time it takes the contact forces
to drive the particles apart.40 In simple shear flows, a small
shear rate yields the small granular temperature in the system.
With all other parameters fixed, the non-dimensional parame-
ter k

ρd3γ2 becomes large, and the inertial-non-collisional regime

becomes narrow on the regime map as shown in Fig. 3. The
kinetic theory (KT) could remain accurate at a small shear rate
in a wide range of solid volume fraction φ. This could also
be explained by the MKT, because the discrepancy between
MKT and kinetic theory becomes smaller and the fraction
of inelastic collisions K will be close to one. According to
Eq. (12), this is due to the small granular temperature at the
low shear rates. With a larger shear rate, the mean free-flight
time tends to be smaller and becomes comparable to the par-
ticle collision interval as predicted by the kinetic theory. The
inertial-collisional regime becomes narrow on the map, mak-
ing KT fail even for moderate dense flows, and we found
that MKT tends to underestimate the dissipation rate due to
the increasing granular temperature by the large shear rate. In
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FIG. 5. Schematic diagram of particles being sheared between two plates.

this case, the cutoff time should be determined by the shear-
induced time instead of the binary collision duration, so the use
of tc = tDEM is no longer appropriate. Nevertheless for flows in
the inertial regime with high solid fractions, by using tc = tDEM

the MKT in general is able to improve the kinetic theory model
and obtain results that agree well with the numerical DEM
results.

B. Plane shear flow

We perform three-dimensional DEM simulations of the
plane shear flows and compare its results with the MKT results.
We make sure the solid volume fraction φ < 0.57 across the
domain and apply the MKT. By comparing with the origi-
nal kinetic theory and another popular modification of kinetic
theory or EKT, we evaluate the presented model under non-
homogeneous shear flow conditions. Several granular flow
simulation studies were performed with shear flow, but most of
them assume the Lees-Edwards boundary condition,9,13,18,29

which is a special kind of periodic boundary condition that
does not represent a real physical boundary. The hydrody-
namic flow fields under the Lees-Edward boundary condition
are always uniform. Other researchers simulated the sheared
granular flows confined in frictional flat boundaries,43,44 but
flows in their systems are not very dense. In addition, they
introduced large slip velocities near the boundaries. The setup
of boundaries in the present simulations is similar to the work
by Saitoh and Hayakawa25 where the spherical particles are
attached to the top and bottom walls. The system is composed
of identical, frictionless spheres, which are confined in a three-
dimensional cube and sheared between two parallel planes, as
shown in Figure 5. In this case, there is no interstitial fluid to
provide hydrodynamic forces on the particles. The top plate
has a velocity of U/2 directing to the right and the bottom plate
has a velocity of U/2 to the left. The boundary conditions in
the x and z directions are periodic. The simulation parameters
are listed in Table II.

Figure 6 shows three two-dimensional section views of
a plane through the center. As shown in Fig. 6(a), at t = 0

TABLE II. Simulation parameters.

D = 0.8 cm
ρ = 2700 kg/m3

e = 0.9
L × H ×W = 20 cm × 20 cm × 10 cm
U = 0.20 m/s

the particles are uniformly distributed with random veloci-
ties. The particles collide freely without energy dissipation for
enough time to ensure that they are randomly distributed and
the velocities obey the Maxwellian distribution. Figures 6(b)
and 6(c) show the time evolution of the particles’ configu-
ration for φ= 0.19 and φ= 0.46, respectively. It is observed
that a high solid volume fraction particle cluster is formed in
the center region, when the system reaches steady state, at t
= 60 s. With a higher number of particles in the system, we
observe larger clusters. The solid volume fraction in the cen-
ter region approaches the maximum packing density,φ= 0.636
during this transient, and finally is reduced to a lower value,
which depends on the rate of shear. The simulations show
that systems with small rates of shear have lower granular
energy fluctuations at the core, which leads to the formation
of denser clusters, i.e., higher solid volume fractions. Similar
results were also observed in previous studies.25,45,46

We modified the source code in the MFIX and
implemented the contact duration theory in order to obtain
a numerical solution that can be compared to the DEM results.
The Johnson-Jackson boundary condition47 was adopted for
the solid phase to reproduce the rough wall in the DEM sim-
ulations. The force exerted on the boundary by the particles is
the sum of collisional and frictional contributions. This yields
the following momentum equation:

usl ·
(
σc + σf

)
· n

|usl |
+

Ψp
√

3Tπρφ |usl |

6φc

[
1 − (φ/φc)1/3

] + Nf tanδ = 0.

(21)

Here, usl is the slip velocity between the particles and the
wall; σc and σf are the collisional and frictional stress ten-
sors, respectively; and n is the unit normal vector to the
wall. The first term on the left represents the internal solid
collisional and frictional stress. The second term represents
the rate of tangential momentum transfer to the wall by the
particle-wall collisions. This is modeled as the product of
the collision frequency for each particle, (3T )

1
2 /s, where T

is the granular temperature, the average tangential momen-
tum transferred per collision, φπρd3usl/6, and the number of
particles adjacent to unit area of the surface, 1/ac. The third
term is the stress due to the sliding of the particles. The vari-
able s denotes the average distance between the boundary

and the surface of an adjacent particle: s = d
[(
φc
φ

) 1
3
− 1

]
,

ac = d2
(
φc
φ

) 2
3 , φc = 0.636, and Ψp is the specularity coef-

ficient. In the cases considered here, the granular flow is not
dense near the boundaries and the particle velocity distribu-
tion is mainly determined by inter-particle collisions rather
than by the surface friction. For this reason, the internal fric-
tional stress term is neglected and the last equation is written
as

usl · σc · n
|usl |

+
Ψp
√

3Tπρφ |usl |

6φc

[
1 − (φ/φc)1/3

] = 0. (22)

The Johnson-Jackson granular energy boundary condition is

−n · qPT = D − G, (23)
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FIG. 6. Evolution of the configuration of particles (left:
3507 particles; right: 7500 particles).

where q is the heat flux, D denotes the dissipation rate due to the
particle-wall collisions, and G stands for the energy generation
due to the particle-wall slip,

D =

[
1
4
πρd3T

(
1 − e2

)] 
√

3T

d
[
(φc/φ)1/3 − 1

]


[
1

d2 (φc/φ)2/3

]
,

(24)

G =
Ψp
√

3Tπρφ |usl |

6φc

[
1 − (φ/φc)1/3

] . (25)

The above equations show that the particle-wall colli-
sions are characterized by the transfer of momentum and the
pseudo-thermal energy. The types of collisions are basically

determined by the specularity coefficient, Ψp, whose actual
value depends on the large-scale roughness of the wall and
varies between zero, for perfectly specular collisions, and one,
for perfectly diffuse collisions. Previous studies have shown
that this coefficient is small when only the collisions of spheri-
cal particles with plane frictional walls are considered because
of the limited tangential momentum transfer between particles
and plane walls.48 In the cases considered here, we extend
the Johnson-Jackson boundary condition by considering addi-
tional physical effects, namely, the wall roughness, and other
boundary parameters, which are carefully chosen to match the
slip velocity in the DEM simulations.

We have tested three cases with 3507 particles (φ = 0.19),
5913 particles (φ = 0.35), and 7500 particles (φ = 0.46).
The domain along the y-direction is divided in 20 slices to
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FIG. 7. Profile of granular temperature T along the y direction. DEM result (dots) and theoretical solution from the KT model (dashed line), theoretical solution
from this model (line) at e = 0.95 (a) and e = 0.9 (b).

FIG. 8. Profile of average velocity 2u/U along the y. DEM result (dots) and theoretical solution from the KT model (dashed line), theoretical solution from this
model (line) at e = 0.95 (a) and e = 0.9 (b).

perform the averaging. We used only the calculation for the
dense case with 7500 particles. The number of particles in
each slice is more than 280, and the resultant velocity/granular
temperature profiles are very smooth along the y-direction.

The solid volume fraction profile is not very smooth because
the slice length we used is rather narrow (about 1.2 times of
particle diameter). Figures 7–9 compare the profiles of the
variables u, T , and φ obtained from the DEM results with

FIG. 9. Profile of solid volume fraction φ along the y direction. DEM result (dots) and theoretical solution from the KT model (dashed line), theoretical solution
from this model (line) at e = 0.95 (a) and e = 0.9 (b).
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FIG. 10. Comparison of granular temperature results from the kinetic theory, the EKT, the MKT, and the DEM. (a) e = 0.95. (b) e = 0.90.

the theoretical solutions from both the classical kinetic the-
ory and the MKT. We observe in Figure 8 that the velocity
profile predictions of both theories agree well with the results
of the DEM simulation. The velocity profiles are primarily
determined by the boundary parameters (e.g., the specular-
ity coefficient) instead of the constitutive equations in the
continuum approach. Due to the large number of boundary
particles (fixed-velocity, no fluctuation energy), the averaged
velocity and solid volume fraction data near the boundaries
in DEM simulations are higher than normal, while the gran-
ular temperature is lower. These are shown as outliers in the
velocity profiles.

It is also apparent that there is a cluster at the center,
where the volume fraction of the solids is significantly higher
than that near the wall, as shown in Fig. 9. The averaged
granular temperature at the core for system with the higher
inelastic coefficient e = 0.95 is more than twice the granular
temperature value of in the system with e = 0.9. High granular
temperature at the core means more particle collisions which
helps prevent the clustering process. This is evident in Fig. 9
where the solid volume fraction at the core when e = 0.95 is
significantly lower than that when e = 0.9 (0.53 vs 0.57). It
is also observed that the kinetic theory predicts a lower core
granular temperature than the DEM, as shown in Figure 7.
This occurs because the core region in the center is denser,
and multi-body collisions with longer lasting contacts prevail.
As a result of this, the binary instant collision assumption is
not valid and the classical theory overestimates the energy dis-
sipation rate. The velocity and density profiles in Figs. 8(a) and
9(b), which were derived from the kinetic theory model, also
have a noticeable discrepancy compared with the DEM results.
Form these results one may conclude that the MKT model,
described in this paper, predicts the DEM results very well,
even in the high solid volume fraction regions, where its predic-
tions are more accurate than those of the kinetic theory model.
Figure 10 also includes the results from the EKT model of the
plane shear flow simulations. It can be seen that the EKT model
does not produce better results for the nearly elastic particulate
systems with restitution coefficient e = 0.95 and underes-
timates the granular temperature in the dense region when
e = 0.9.

V. CONCLUSIONS

Most modifications of the kinetic theory aim to provide
better agreement with the DEM simulation results. Compared
with the DEM, the binary collision assumption behind the
kinetic theory requires the spring constant of particles to be
infinity. However, the spring constant is finite in the DEM
simulations and in actual particulate collisions. This will make
particle interaction a process that takes finite time to occur, and
there will be elastic deformations during collisions. The large
discrepancy observed between the kinetic theory prediction
and DEM results at a high solid volume fraction comes from
the particle softness that classical kinetic theory and most of its
modifications did not consider. As a result of the finite spring
constant, there exists significant amount of elastic deformation
between particles in the dense region using DEM simulations.
This means part of the kinetic energy that the kinetic theory
predicts exists in the form of elastic potential energy in the
DEM simulations and this form of energy cannot be dissi-
pated during collisions. This also explains the overestimated
dissipation rate predicted by the kinetic theory. To improve the
current model, we modify the kinetic theory to consider elas-
ticity of the particle. In this study we employ the MKT that is
derived from the contact duration or cutoff time proposed in
Ref. 1 and compare its results with the DEM results. The pri-
mary focus of our study is to evaluate the selection of the cutoff
time tc that can accurately predict the reduced dissipation rate
as predicted by the DEM results so the applicability of KT
can be extended to dense regime. Instead of treating the cutoff
time as an adjustable number that best fits the IHS simulation
results, we propose the use of a contact duration computed
based on the DEM soft-sphere collision model, a parameter
solely determined by particle properties, as the cutoff time
and investigate its applicability. Two cases including the sim-
ple shear flow and the plane shear flow have been examined
using the MKT model. For the simple shear flows, the MKT
with tc = tDEM is capable to predict results that match well
with the DEM results when the flow is in the inertial regime,
where particle collisions dominate. However, at a high solid
fraction the flow falls into the elastic regime where particles
form a “force chain” network, the cutoff time tc depends on not
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only tDEM but also the shear rate so the MKT with tc = tDEM

fails. For the plane shear flow case where the shear rate and
solid fraction are inhomogeneous, we find that the MKT with
tc = tDEM predicts very well the reduced dissipation rates and
gives very good results, even in the dense particle regime with
a solid fraction up to 0.57. We have shown that, overall, the
MKT model is a significant improvement over the kinetic the-
ory model. The accuracy of the present MKT model decreases
in regions very close to the maximum packing density of the
solids phase or at a very high shear rate. In these cases a cut-
off time other than tDEM has to be used or an improved MKT
model has to be developed.
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APPENDIX: RADIAL DISTRIBUTION FUNCTION

The radial distribution function g0 we used was proposed
by Torquato23 and is based on the numerical results of elastic
particles,

g0 =




2 − φ

2 (1 − φ)3
, if φ < 0.49,

(2 − 0.49)

2 (1 − 0.49)3

0.636 − 0.49
0.636 − φ

, otherwise.
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35L. E. Silbert, D. Ertaş, G. S. Grest, T. C. Halsey, D. Levine, and S. J. Plimp-
ton, “Granular flow down an inclined plane: Bagnold scaling and rheology,”
Phys. Rev. E 64, 051302 (2001).

36Y. Gu, A. Ozel, and S. Sundaresan, “A modified cohesion model
for CFD–DEM simulations of fluidization,” Powder Technol. 296, 17
(2016).

37Y. Gu, S. Chialvo, and S. Sundaresan, “Rheology of cohesive granular
materials across multiple dense-flow regimes,” Phys. Rev. E 90, 032206
(2014).

38M. Syamlal, W. Rogers, and T. J. O’Brien, “MFIX Documentation: The-
ory Guide”, Technical Note DOE/METC-95/1013 and NTIS/DE95000031
(National Energy Technology Laboratory, Department of Energy, 1993).

39A. Lees and S. Edwards, “The computer study of transport processes
under extreme conditions,” J. Phys. C: Solid State Phys. 5, 1921
(1972).

40C. S. Campbell, “Granular shear flows at the elastic limit,” J. Fluid Mech.
465, 261 (2002).

41Q. Sun, F. Jin, and G. G. Zhou, “Energy characteristics of simple shear
granular flows,” Granular Matter 15, 119 (2013).

42C. Campbell and Y. Zhang, “The interface between fluid-like and solid-like
behavior in granular flows,” J. Fluid Mech. 237, 541 (1992).

43M. Babic, “Unsteady Couette granular flows,” Phys. Fluids 9, 2486
(1997).

44L. Popken and P. W. Cleary, “Comparison of kinetic theory and discrete
element schemes for modelling granular Couette flows,” J. Comput. Phys.
155, 1 (1999).

http://dx.doi.org/10.1007/s100350050017
http://dx.doi.org/10.1017/s0022112084000586
http://dx.doi.org/10.1063/1.865302
http://dx.doi.org/10.1016/j.powtec.2004.01.018
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102130
http://dx.doi.org/10.1016/j.powtec.2011.10.008
http://dx.doi.org/10.1063/1.4812804
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1016/j.ijplas.2009.06.007
http://dx.doi.org/10.1016/j.ijplas.2009.06.007
http://dx.doi.org/10.1103/physrevlett.108.178301
http://dx.doi.org/10.1007/s00707-014-1125-1
http://dx.doi.org/10.1016/s0032-5910(02)00132-8
http://dx.doi.org/10.1016/0022-0396(87)90038-6
http://dx.doi.org/10.1017/s0022112096002224
http://dx.doi.org/10.1017/s0022112009006776
http://dx.doi.org/10.1103/physreve.75.031305
http://dx.doi.org/10.1063/1.2364168
http://dx.doi.org/10.1007/s10035-007-0057-z
http://dx.doi.org/10.1007/s10035-010-0169-8
http://dx.doi.org/10.1063/1.1449466
http://dx.doi.org/10.1103/physreve.51.3170
http://dx.doi.org/10.1103/physreve.75.021302
http://dx.doi.org/10.1007/s10035-003-0136-8
http://dx.doi.org/10.1063/1.1449466
http://dx.doi.org/10.1103/physreve.59.5895
https://mfix/.netl.doe.gov/documentation/MFIXEquations2012
http://dx.doi.org/10.1007/s100350050009
http://dx.doi.org/10.1103/physreve.58.3416
http://dx.doi.org/10.1103/physreve.58.3416
http://dx.doi.org/10.1103/physreve.64.051302
http://dx.doi.org/10.1016/j.powtec.2015.09.037
http://dx.doi.org/10.1103/physreve.90.032206
http://dx.doi.org/10.1088/0022-3719/5/15/006
http://dx.doi.org/10.1017/s002211200200109x
http://dx.doi.org/10.1007/s10035-012-0378-4
http://dx.doi.org/10.1017/s0022112092003525
http://dx.doi.org/10.1063/1.869367
http://dx.doi.org/10.1006/jcph.1999.6292


043302-12 Duan et al. Phys. Fluids 29, 043302 (2017)

45S.-R. Kim, G. Maenhaut-Michel, M. Yamada, Y. Yamamoto, K. Matsui,
T. Sofuni, T. Nohmi, and H. Ohmori, “Multiple pathways for SOS-induced
mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in
strongly enhancing mutagenesis in the absence of any exogenous treatment
to damage DNA,” Proc. Natl. Acad. Sci. U. S. A. 94, 13792 (1997).

46D. Vescovi, D. Berzi, P. Richard, and N. Brodu, “Plane shear flows of fric-
tionless spheres: Kinetic theory and 3D soft-sphere discrete element method
simulations,” Phys. Fluids 26, 053305 (2014).

47P. C. Johnson and R. Jackson, “Frictional–collisional constitutive relations
for granular materials, with application to plane shearing,” J. Fluid Mech.
176, 67 (1987).

48T. Li and S. Benyahia, “Revisiting Johnson and Jackson boundary conditions
for granular flows,” AIChE J. 58, 2058 (2012).

49S. Benyahia, M. Syamlal, and T. O’Brien, Summary of MFIX equations
2012-1, available at https://mfix/.netl.doe.gov/documentation/
MFIXEquations2012–1.pdf, 2012.

http://dx.doi.org/10.1073/pnas.94.25.13792
http://dx.doi.org/10.1063/1.4879267
http://dx.doi.org/10.1017/s0022112087000570
http://dx.doi.org/10.1002/aic.12728
https://mfix/.netl.doe.gov/documentation/MFIXEquations2012--1.pdf
https://mfix/.netl.doe.gov/documentation/MFIXEquations2012--1.pdf

