High-Performance LLM Inference with vLLM and TGI
This comprehensive tutorial covers high-performance LLM inference hosting using vLLM and TGI (Text Generation Inference), with a strong focus on optimizing inference speed. Both frameworks are production-ready inference servers that provide high throughput, low latency, and efficient GPU memory utilization.
Introduction to vLLM and TGI
vLLM (Very Large Language Model)
- Developer: UC Berkeley
- Key Innovation: PagedAttention algorithm for efficient memory management
- Best For: High-throughput scenarios with batch processing
- Language: Python-based, easy to integrate
- Supports: Most popular models (LLaMA, Mistral, GPT, etc.)
TGI (Text Generation Inference)
- Developer: Hugging Face
- Key Innovation: Written in Rust for maximum performance
- Best For: Low-latency scenarios and real-time applications
- Features: Built-in Flash Attention, extensive quantization support
- Supports: GPTQ, AWQ, bitsandbytes quantization
Key Speed Optimization Techniques
Both frameworks implement several critical optimization techniques:
- Continuous Batching - Process multiple requests in parallel efficiently
- KV Cache Optimization - Efficient attention computation and memory usage
- Quantization - Reduce model size (4-bit, 8-bit) for faster inference
- Tensor Parallelism - Distribute model across multiple GPUs
- Speculative Decoding - Use smaller models to predict tokens
- PagedAttention (vLLM) - Eliminates memory fragmentation
- Flash Attention - Optimized attention computation
Part 1: vLLM Setup and Installation
Installation
# Install vLLM
pip install vllm
# For development
pip install vllm[dev]
Starting vLLM Server - Basic Configuration
# Basic server startup
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--port 8000 \
--tensor-parallel-size 1
Advanced vLLM Server Configurations
# With quantization (faster, less memory)
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--quantization awq \
--port 8000
# With multiple GPUs (tensor parallelism)
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--tensor-parallel-size 2 \
--port 8000
# With continuous batching optimization
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--max-num-seqs 256 \
--gpu-memory-utilization 0.95 \
--port 8000
vLLM Client Implementation
vLLM provides an OpenAI-compatible API, making it easy to integrate:
import asyncio
import time
from openai import OpenAI, AsyncOpenAI
from typing import List, Dict, Any
class VLLMClient:
"""
Client for interacting with vLLM server.
vLLM provides an OpenAI-compatible API.
"""
def __init__(self, base_url: str = "http://localhost:8000/v1", api_key: str = "dummy"):
self.client = OpenAI(base_url=base_url, api_key=api_key)
self.base_url = base_url
def generate(
self,
prompt: str,
model: str = "meta-llama/Llama-2-7b-chat-hf",
max_tokens: int = 100,
temperature: float = 0.7,
top_p: float = 1.0,
stream: bool = False
) -> str:
"""
Generate text using vLLM.
Args:
prompt: Input prompt
model: Model name
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
stream: Whether to stream the response
"""
messages = [{"role": "user", "content": prompt}]
response = self.client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=stream
)
if stream:
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
return full_response
else:
return response.choices[0].message.content
def batch_generate(
self,
prompts: List[str],
model: str = "meta-llama/Llama-2-7b-chat-hf",
max_tokens: int = 100,
temperature: float = 0.7
) -> List[str]:
"""
Generate text for multiple prompts using vLLM's continuous batching.
This is more efficient than sequential calls.
"""
messages_list = [[{"role": "user", "content": prompt}] for prompt in prompts]
results = []
for messages in messages_list:
response = self.client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
results.append(response.choices[0].message.content)
return results
def async_batch_generate(
self,
prompts: List[str],
model: str = "meta-llama/Llama-2-7b-chat-hf",
max_tokens: int = 100,
temperature: float = 0.7
) -> List[str]:
"""
Generate text for multiple prompts asynchronously.
This leverages vLLM's continuous batching for maximum throughput.
"""
async def generate_single(prompt: str):
client = AsyncOpenAI(base_url=self.base_url, api_key="dummy")
messages = [{"role": "user", "content": prompt}]
response = await client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_tokens,
temperature=temperature
)
return response.choices[0].message.content
async def generate_all():
tasks = [generate_single(prompt) for prompt in prompts]
return await asyncio.gather(*tasks)
return asyncio.run(generate_all())
Part 2: TGI Setup and Installation
Installation with Docker (Recommended)
# Basic TGI server with Docker
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf
Advanced TGI Server Configurations
# With quantization (4-bit for speed)
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--quantize bitsandbytes \
--num-shard 1
# With multiple GPUs (sharding)
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--num-shard 2
# With custom batching configuration
docker run --gpus all -p 8080:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--max-batch-total-tokens 4096 \
--num-shard 1 \
--port 80
TGI Client Implementation
TGI provides a REST API (not OpenAI-compatible by default):
import requests
import json
from typing import List, Dict, Any
class TGIClient:
"""
Client for interacting with TGI server.
TGI provides a REST API (not OpenAI-compatible by default).
"""
def __init__(self, base_url: str = "http://localhost:8080"):
self.base_url = base_url
def generate(
self,
prompt: str,
max_new_tokens: int = 100,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 50,
do_sample: bool = True,
stream: bool = False
) -> str:
"""
Generate text using TGI.
Args:
prompt: Input prompt
max_new_tokens: Maximum tokens to generate
temperature: Sampling temperature
top_p: Nucleus sampling parameter
top_k: Top-k sampling parameter
do_sample: Whether to use sampling
stream: Whether to stream the response
"""
url = f"{self.base_url}/generate"
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"do_sample": do_sample
}
}
if stream:
payload["stream"] = True
response = requests.post(url, json=payload, stream=True)
full_response = ""
for line in response.iter_lines():
if line:
data = json.loads(line)
if "token" in data:
full_response += data["token"]["text"]
return full_response
else:
response = requests.post(url, json=payload)
response.raise_for_status()
result = response.json()
return result["generated_text"]
def batch_generate(
self,
prompts: List[str],
max_new_tokens: int = 100,
temperature: float = 0.7
) -> List[str]:
"""
Generate text for multiple prompts using TGI's batching.
"""
results = []
for prompt in prompts:
result = self.generate(
prompt=prompt,
max_new_tokens=max_new_tokens,
temperature=temperature
)
results.append(result)
return results
Part 3: vLLM Speed Optimization Strategies
1. Continuous Batching (Automatic)
vLLM automatically batches requests for optimal throughput:
# Tune batching with max-num-seqs parameter
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--max-num-seqs 256 \
--port 8000
Configuration Guide:
- Higher
max-num-seqs= More throughput, more memory usage - Typical values: 64-256 depending on GPU memory
- Monitor GPU memory utilization to find optimal value
2. PagedAttention (Automatic)
PagedAttention is vLLM’s key innovation for efficient memory management:
- No configuration needed - automatically enabled
- Eliminates memory fragmentation
- Enables higher batch sizes
- Up to 24x higher throughput vs traditional methods
3. Quantization for Speed
Quantization reduces model size and increases inference speed:
# AWQ quantization (recommended for speed)
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--quantization awq \
--port 8000
# GPTQ quantization
python -m vllm.entrypoints.openai.api_server \
--model TheBloke/Llama-2-7B-Chat-GPTQ \
--quantization gptq \
--port 8000
Benefits:
- 2-3x speedup
- 4x memory reduction
- Minimal quality loss (<2% typically)
4. Tensor Parallelism (Multi-GPU)
Distribute model across multiple GPUs:
# Use 2 GPUs
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--tensor-parallel-size 2 \
--port 8000
# Use 4 GPUs for larger models
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-70b-chat-hf \
--tensor-parallel-size 4 \
--port 8000
Performance:
- Near-linear scaling up to 4 GPUs
- Best for large models (70B+)
- Requires compatible GPUs
5. KV Cache Optimization
Optimize GPU memory utilization for faster inference:
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--gpu-memory-utilization 0.95 \
--port 8000
Tuning Guide:
- Default: 0.9 (90% of GPU memory)
- Higher values (0.95) = More caching, faster inference
- Leave some headroom to prevent OOM errors
6. Complete Optimization Example
Here’s a fully optimized vLLM configuration:
# Maximum speed configuration
python -m vllm.entrypoints.openai.api_server \
--model meta-llama/Llama-2-7b-chat-hf \
--quantization awq \
--tensor-parallel-size 2 \
--max-num-seqs 256 \
--gpu-memory-utilization 0.95 \
--port 8000
Expected Performance:
- 3-5x faster than baseline
- 50-100 requests/second (depending on prompt length)
- <100ms latency for short prompts
Part 4: TGI Speed Optimization Strategies
1. Continuous Batching
TGI automatically batches requests:
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--max-batch-total-tokens 4096
Configuration:
- Higher
max-batch-total-tokens= More throughput - Typical values: 2048-8192
2. Flash Attention (Automatic)
Flash Attention is enabled by default for supported models:
- No configuration needed
- 2-4x faster attention computation
- Reduced memory usage
- Works with most modern architectures
3. Quantization
TGI supports multiple quantization methods:
# bitsandbytes (4-bit or 8-bit)
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--quantize bitsandbytes
# GPTQ quantization
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id TheBloke/Llama-2-7B-Chat-GPTQ \
--quantize gptq
# AWQ quantization
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id TheBloke/Llama-2-7B-Chat-AWQ \
--quantize awq
4. Model Sharding (Multi-GPU)
Distribute model across GPUs:
# Use 2 GPUs
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--num-shard 2
5. Token Streaming
Stream tokens for better perceived latency:
# Client code for streaming
def generate_stream(self, prompt: str):
url = f"{self.base_url}/generate_stream"
payload = {
"inputs": prompt,
"parameters": {"max_new_tokens": 100}
}
response = requests.post(url, json=payload, stream=True)
for line in response.iter_lines():
if line:
data = json.loads(line)
if "token" in data:
yield data["token"]["text"]
6. Complete Optimization Example
# Maximum speed configuration
docker run --gpus all -p 8080:80 \
ghcr.io/huggingface/text-generation-inference:latest \
--model-id meta-llama/Llama-2-7b-chat-hf \
--quantize bitsandbytes \
--num-shard 2 \
--max-batch-total-tokens 4096 \
--port 80
Part 5: Performance Benchmarking
Benchmarking Framework
import statistics
def benchmark_inference_speed(
client,
prompts: List[str],
num_runs: int = 5
) -> Dict[str, Any]:
"""
Benchmark inference speed with multiple runs.
Args:
client: vLLM or TGI client
prompts: List of prompts to test
num_runs: Number of benchmark runs
"""
latencies = []
throughputs = []
for run in range(num_runs):
start_time = time.time()
if isinstance(client, VLLMClient):
results = client.async_batch_generate(prompts)
elif isinstance(client, TGIClient):
results = client.batch_generate(prompts)
else:
raise ValueError("Unknown client type")
end_time = time.time()
total_time = end_time - start_time
latencies.append(total_time / len(prompts))
throughputs.append(len(prompts) / total_time)
return {
"avg_latency": statistics.mean(latencies),
"std_latency": statistics.stdev(latencies) if len(latencies) > 1 else 0,
"avg_throughput": statistics.mean(throughputs),
"std_throughput": statistics.stdev(throughputs) if len(throughputs) > 1 else 0,
"min_latency": min(latencies),
"max_latency": max(latencies),
"num_prompts": len(prompts),
"num_runs": num_runs
}
Speed Comparison Utility
class InferenceSpeedOptimizer:
"""
Demonstrates various techniques to improve inference speed.
"""
@staticmethod
def measure_latency(func, *args, **kwargs) -> Dict[str, float]:
"""
Measure the latency of a function call.
"""
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
return {
"result": result,
"latency": end_time - start_time,
"tokens_per_second": len(result.split()) / (end_time - start_time) if result else 0
}
@staticmethod
def measure_throughput(func, prompts: List[str], *args, **kwargs) -> Dict[str, float]:
"""
Measure throughput (requests per second) for batch processing.
"""
start_time = time.time()
results = func(prompts, *args, **kwargs)
end_time = time.time()
total_time = end_time - start_time
return {
"results": results,
"total_time": total_time,
"throughput": len(prompts) / total_time,
"avg_latency": total_time / len(prompts)
}
Part 6: Optimization Configuration Examples
vLLM Configurations
def vllm_optimization_examples():
"""
Example vLLM server configurations for different optimization goals.
"""
examples = {
"max_speed": {
"command": """python -m vllm.entrypoints.openai.api_server \\
--model meta-llama/Llama-2-7b-chat-hf \\
--quantization awq \\
--tensor-parallel-size 2 \\
--max-num-seqs 256 \\
--gpu-memory-utilization 0.95 \\
--port 8000""",
"description": "Maximum speed: quantization + tensor parallelism + high batching"
},
"balanced": {
"command": """python -m vllm.entrypoints.openai.api_server \\
--model meta-llama/Llama-2-7b-chat-hf \\
--max-num-seqs 128 \\
--gpu-memory-utilization 0.9 \\
--port 8000""",
"description": "Balanced: good speed and quality"
},
"low_memory": {
"command": """python -m vllm.entrypoints.openai.api_server \\
--model meta-llama/Llama-2-7b-chat-hf \\
--quantization awq \\
--max-num-seqs 64 \\
--gpu-memory-utilization 0.8 \\
--port 8000""",
"description": "Low memory: quantization + reduced batching"
},
"high_quality": {
"command": """python -m vllm.entrypoints.openai.api_server \\
--model meta-llama/Llama-2-7b-chat-hf \\
--max-num-seqs 64 \\
--gpu-memory-utilization 0.85 \\
--dtype float16 \\
--port 8000""",
"description": "High quality: no quantization, lower batching"
}
}
return examples
TGI Configurations
def tgi_optimization_examples():
"""
Example TGI server configurations for different optimization goals.
"""
examples = {
"max_speed": {
"command": """docker run --gpus all -p 8080:80 \\
ghcr.io/huggingface/text-generation-inference:latest \\
--model-id meta-llama/Llama-2-7b-chat-hf \\
--quantize bitsandbytes \\
--num-shard 2 \\
--max-batch-total-tokens 4096 \\
--port 80""",
"description": "Maximum speed: quantization + sharding + high batching"
},
"balanced": {
"command": """docker run --gpus all -p 8080:80 \\
ghcr.io/huggingface/text-generation-inference:latest \\
--model-id meta-llama/Llama-2-7b-chat-hf \\
--num-shard 1 \\
--max-batch-total-tokens 2048 \\
--port 80""",
"description": "Balanced: good speed and quality"
},
"low_memory": {
"command": """docker run --gpus all -p 8080:80 \\
ghcr.io/huggingface/text-generation-inference:latest \\
--model-id meta-llama/Llama-2-7b-chat-hf \\
--quantize bitsandbytes \\
--num-shard 1 \\
--max-batch-total-tokens 1024 \\
--port 80""",
"description": "Low memory: quantization + reduced batching"
},
"high_quality": {
"command": """docker run --gpus all -p 8080:80 \\
ghcr.io/huggingface/text-generation-inference:latest \\
--model-id meta-llama/Llama-2-7b-chat-hf \\
--num-shard 1 \\
--max-batch-total-tokens 1024 \\
--dtype float16 \\
--port 80""",
"description": "High quality: no quantization, lower batching"
}
}
return examples
Part 7: Best Practices for Speed Optimization
15 Essential Optimization Techniques
- Choose the Right Inference Server
- vLLM: Best for high-throughput batch processing
- TGI: Best for low-latency real-time applications
- Both support continuous batching and modern optimizations
- Use Quantization
- 4-bit quantization (AWQ, GPTQ, bitsandbytes)
- 2-3x speedup with 4x memory reduction
- Minimal quality loss (<2% typically)
- AWQ recommended for vLLM, bitsandbytes for TGI
- Optimize Batching
- Increase
max-num-seqs(vLLM) ormax-batch-total-tokens(TGI) - Higher values = more throughput
- Monitor GPU memory usage
- Find sweet spot for your hardware
- Increase
- Use Multiple GPUs
- Tensor parallelism (vLLM) or sharding (TGI)
- 2-4x speedup with 2-4 GPUs
- Best for models 13B+
- Requires compatible GPUs
- Optimize KV Cache
- Increase
gpu-memory-utilization(vLLM) - Increase
max-total-tokens(TGI) - More cache = faster inference
- Balance with available memory
- Increase
- Use Async Requests
- Send multiple requests concurrently
- Leverage continuous batching
- Use asyncio or threading
- Don’t wait for sequential processing
- Stream Responses
- Better perceived latency
- Users see results faster
- Reduces time-to-first-token
- Improves user experience
- Choose Appropriate Model Size
- Smaller models = faster inference
- 7B models for most tasks
- 13B for complex reasoning
- 70B only when necessary
- Monitor Resource Usage
- Watch GPU memory utilization
- Monitor GPU compute usage
- Adjust parameters based on bottlenecks
- Use
nvidia-smifor monitoring
- Cache Frequent Prompts
- Cache identical prompts
- Use memoization or Redis
- Reduces redundant computation
- Significant speedup for repeated queries
- Optimize Prompt Length
- Shorter prompts = faster inference
- Remove unnecessary context
- Use prompt compression techniques
- KV cache size matters
- Tune Generation Parameters
- Lower
max_tokens= faster inference - Adjust temperature, top_p, top_k
- Use greedy decoding (temperature=0) for speed
- Balance quality vs speed
- Lower
- Use Appropriate Data Types
- float16 instead of float32
- Reduces memory usage
- Increases speed
- Minimal quality impact
- Benchmark and Iterate
- Test different configurations
- Measure latency and throughput
- Optimize for your specific workload
- Use profiling tools
- Hardware Considerations
- Use latest GPU architectures (A100, H100)
- Ensure sufficient PCIe bandwidth
- Use NVMe storage for model loading
- Consider CPU-GPU memory transfer
Part 8: Complete Working Example
def example_usage():
"""
Complete example demonstrating vLLM and TGI usage.
"""
print("=" * 80)
print("LLM Inference Hosting Tutorial - Example Usage")
print("=" * 80)
# Example prompts for testing
prompts = [
"Explain machine learning in one sentence.",
"What is the capital of France?",
"Write a haiku about programming.",
]
# vLLM Example
print("\n1. vLLM Client Example:")
print("-" * 80)
try:
vllm_client = VLLMClient()
result = vllm_client.generate(
prompt="What is Python?",
max_tokens=50,
temperature=0.7
)
print(f"Result: {result}")
# Batch generation
print("\nBatch generation:")
results = vllm_client.async_batch_generate(prompts)
for i, result in enumerate(results):
print(f"\nPrompt {i+1}: {result[:100]}...")
except Exception as e:
print(f"Error (vLLM server may not be running): {e}")
print("\nStart vLLM server with:")
print("python -m vllm.entrypoints.openai.api_server \\")
print(" --model meta-llama/Llama-2-7b-chat-hf \\")
print(" --port 8000")
# TGI Example
print("\n2. TGI Client Example:")
print("-" * 80)
try:
tgi_client = TGIClient()
result = tgi_client.generate(
prompt="What is Python?",
max_new_tokens=50,
temperature=0.7
)
print(f"Result: {result}")
# Batch generation
print("\nBatch generation:")
results = tgi_client.batch_generate(prompts)
for i, result in enumerate(results):
print(f"\nPrompt {i+1}: {result[:100]}...")
except Exception as e:
print(f"Error (TGI server may not be running): {e}")
print("\nStart TGI server with Docker:")
print("docker run --gpus all -p 8080:80 \\")
print(" ghcr.io/huggingface/text-generation-inference:latest \\")
print(" --model-id meta-llama/Llama-2-7b-chat-hf")
# Optimization Examples
print("\n3. Optimization Configuration Examples:")
print("-" * 80)
print("\nvLLM Optimizations:")
vllm_examples = vllm_optimization_examples()
for name, config in vllm_examples.items():
print(f"\n{name.upper()}:")
print(f" {config['description']}")
print(f" {config['command']}")
print("\n\nTGI Optimizations:")
tgi_examples = tgi_optimization_examples()
for name, config in tgi_examples.items():
print(f"\n{name.upper()}:")
print(f" {config['description']}")
print(f" {config['command']}")
print("\n" + "=" * 80)
if __name__ == "__main__":
example_usage()
Part 9: vLLM vs TGI Performance Comparison
When to Choose vLLM
Advantages:
- ✅ Higher throughput for batch processing (2-3x)
- ✅ Better memory efficiency with PagedAttention
- ✅ Easier Python integration
- ✅ More flexible configuration options
- ✅ Better for high-concurrency scenarios
- ✅ Active development and community support
Best For:
- API serving with high request volume
- Batch processing workflows
- Research and experimentation
- Python-first environments
When to Choose TGI
Advantages:
- ✅ Lower latency for single requests (10-20% faster)
- ✅ Rust-based for maximum performance
- ✅ Better Docker integration
- ✅ Built-in Flash Attention
- ✅ Extensive quantization support
- ✅ Production-ready with Hugging Face backing
Best For:
- Real-time chat applications
- Interactive user experiences
- Low-latency requirements
- Docker/Kubernetes deployments
Performance Metrics (Same Hardware)
| Metric | vLLM | TGI |
|---|---|---|
| Throughput (batch) | 100-150 req/s | 70-100 req/s |
| Single request latency | 100-120ms | 80-100ms |
| Memory efficiency | Excellent (PagedAttention) | Good |
| GPU utilization | 95%+ | 90%+ |
| Concurrent users | High (256+) | Medium (128+) |
Recommendation
- Choose vLLM if: You need maximum throughput and batch processing efficiency
- Choose TGI if: You need lowest possible latency for real-time applications
- Both are excellent: Production-ready, well-maintained, and highly optimized
Key Takeaways
- Both frameworks are production-ready with excellent performance
- Quantization is critical - 2-3x speedup with minimal quality loss
- Continuous batching enables efficient multi-request processing
- GPU utilization should be monitored and optimized
- Choose based on use case: vLLM for throughput, TGI for latency
- Start simple, then optimize - measure before adding complexity
- Hardware matters - invest in modern GPUs for best results
- Cache aggressively - eliminate redundant computation
- Stream for UX - improve perceived performance
- Monitor and iterate - continuous optimization is key
With these techniques, you can achieve 3-5x speedup over baseline inference and serve hundreds of requests per second efficiently!
Enjoy Reading This Article?
Here are some more articles you might like to read next: